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By systematically varying the mobility of self-propelled particles in a 2D lattice, we experimentally
study the influence of particle mobility on system’s collective motion. Our system is intrinsically
nonequilibrium due to the lack of energy equipartition. By constructing the covariance matrix of spatial
fluctuations and solving for its eigenmodes, we obtain the collective motions of the system with various
magnitudes. Interestingly, our structurally ordered nonequilibrium system exhibits properties almost
identical to disordered glassy systems under thermal equilibrium: the modes with large overall motions are
spatially correlated and quasilocalized while the modes with small collective motions are highly localized,
resembling the low- and high-frequency modes in glass. More surprisingly, a peak similar to the boson peak
forms in our nonequilibrium system as the number of mobile particles increases, revealing the possible
origin of the boson peak from a dynamic aspect. We further illustrate that the spatially correlated large-
movement modes can be produced by the cooperation of highly active particles above a threshold fraction,
while the localized small-movement modes can be created by adding individual inactive particles. Our
study clarifies the role of mobility in collective motions, and further suggests a promising possibility of
extending the powerful mode analysis approach to nonequilibrium systems.
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Studying the collective motions or vibrational modes in
solids is an important topic for condensed matter physics,
as it plays an essential role in understanding the heat
capacity, sound propagation, and thermal conductivity of
solids. The powerful mode-analysis approach beautifully
extracts the collective behaviors of an entire system from
the motions of numerous individual particles. From these
modes, deep insights of the system at different length and
time scales can be obtained. In particular, this analysis
has been widely applied to equilibrium systems, where
“equilibrium” means a stable or metastable state that
satisfies energy equipartition. However, the more general
situation of nonequilibrium systems is largely unexplored.
Using active-matter systems, we now tackle this important
question at the single-particle level.
In equilibrium systems, energy equipartition simplifies

the problem by ensuring that every particle and mode has
the same energy, 1

2
kBT. In crystals, the vibrational modes

are plane waves and are excellently described by the Debye
model. However, due to the structural disorders that break
the translational invariance, the modes in disordered glassy
systems are much more complex and interesting [1–16].
In particular, at low frequencies strong motions tend to
concentrate at the defective soft spots, while the overall
background is still like a plane wave [5,17–21]; this
produces quasilocalized modes that play a crucial role in
system rearrangements and relaxation [21–23]. The num-
ber density of these low-frequency modes also significantly
exceeds the crystalline counterpart and forms the so-called
“boson peak,” whose origin is still under active debate

[10,24–28]. As the frequency increases to the intermediate
range, the modes become extended and uncorrelated. Once
the high-frequency regime is reached, significant motions
will concentrate only at very few rigid sites, which
produces highly localized modes [20,29].
However, in nonequilibrium systems the important con-

dition of energy equipartition breaks down. As a result,
individual particles may have distinct kinetic energies or
mobilities; thus, heterogeneity or “disorder” from a purely
dynamic aspect can naturally arise. How does this special
type of dynamic disorder affect the system? Is it similar to
or different from the structural disorder, and can the two
be understood in a unified picture? This fundamental issue
underlies numerous nonequilibrium systems that do not
satisfy energy equipartition. Clarifying this issue is also
crucial for the important field of active-matter systems
currently under intensive research, such as the cooperative
behaviors of bacteria, birds, or fish within a large group, the
collective motion of self-driven colloids, and the global
movements and patterns of granular materials under exter-
nal excitation [30–38]. However, due to the difficulty in
controlling and adjusting the kinetic energy or mobility of
every single particle, this fundamental puzzle remains an
open question.
Using self-propelled active particles confined in a

2D square lattice, we systematically address this puzzle
at the single-particle level. Our particles are identical metal
spheres with d¼ 13.00�0.01mm and m¼9.915�0.005g
(total mass of one sphere plus one motor). Each particle
is connected to four nearest neighbors by identical springs
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(k ¼ 2.97� 0.16 N=m, l0 ¼ 15.46� 0.36 mm); they form
a square lattice as shown in Fig. 1(a). All springs are
stretched to reach the lattice constant of 45.0� 1.5 mm,
and the entire system contains 15 × 15 ¼ 225 particles. To
control the mobility at the single-particle level, under every
particle we attach a small vibrating motor independently
driven by external power input. Once turned on, motors will
drive particles to move randomly around their equilibrium
positions in 2D (see the Supplemental Movie [39]).
Because the attractive interaction between particles is
harmonic, the spatial fluctuations (renormalized by local
variance) obey an excellent Gaussian distribution, as shown
in Fig. 1(b). Clearly every particle has a well-defined
equilibrium position, and the time-averaged deviation from
it, hδrii ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δx2i þ δy2i
p

i, provides a good description for
the mobility of each particle. Because of the distinct motor
mobilities, hδrii’s at different sites have a typical dispersion
above 15%, which is much larger than the variations in
lattice constant, particle mass, and interaction potential.
Therefore, our system provides an ideal platform to probe
the influence of mobility heterogeneity: both the structure
and the interaction are set at their simplest situations, and
only mobility varies significantly.
To understand the role of this mobility disorder in the

collective motion, we construct the covariance matrix of
spatial fluctuations and calculate its eigenmodes [19,38,40].
This particular principal component analysis on spatial fluc-
tuations has great potential for extracting the system’s coll-
ective movements: in equipartitioned equilibrium systems
the eigenmodes are identical to the vibrationalmodes [38]. In
nonequilibrium systems the eigenmodes are no longer the
same as vibrational modes; however, they still reveal the
systems collective motions at the single-particle level.
More specifically, we track the positions of all

particles for 1250 frames (see the Supplemental Material
for the influence of the frame number [39]) and we

construct the covariance matrix [19,38,40], Ci;j ¼ h½riðtÞ−
hriðtÞi�½rjðtÞ − hrjðtÞi�i, with i; j ¼ 1;…; 2Np running
over the x and y coordinates of all particles and hi
indicating time average over all frames. To eliminate the
boundary effect, we only use the central Np ¼ 11 × 11 ¼
121 particles, which results in 2Np ¼ 242 eigenmodes. In
equilibrium systems, these eigenmodes are identical to the
vibrational modes, with the eigenvalue λ directly related
to the vibrational frequency ω, ω ∝ 1=

ffiffiffi

λ
p

[17,38,40].
Analogous to ω, therefore, in our nonequilibrium system
we define a dimensionless parameter, ω̂≡ hδ̄ri= ffiffiffi

λ
p

,
which has the same λ dependence and is renormalized
by the time-and-location-averaged displacement hδ̄ri.
Because of the lack of equipartition, our eigenmodes are
no longer equivalent to vibrational modes and ω̂ is not the
vibrational frequency, but these modes still indicate specific
patterns of collective movements [see Fig. 2(a)], following
which the system can achieve the overall displacement
magnitude described by

ffiffiffi

λ
p

or 1=ω̂ [37,38].
We show three typical modes at small, intermediate, and

large ω̂ in Fig. 2(a): at small ω̂ polarization vectors exhibit
large-scale correlations, at intermediate ω̂ they are rather
random, and at high ω̂motions localize on very few specific
sites. These behaviors agree excellently with glassy sys-
tems under thermal equilibrium [17,38,40]. To quantify the
spatial correlation, we plot the directional correlation
function, CðrÞ¼PNp

i;j¼1δðrij−rÞêω̂;i ·êω̂;j=
PNp

i;j¼1δðrij−rÞ
(here êω̂;i and êω̂;j are unit polarization vectors in mode
ω̂), for the three modes in Fig. 2(b): it is apparent that large-
scale correlation only exists at small ω̂, which is consistent
with Fig. 2(a).
To illustrate the distribution of motion among different

sites, we plot the participation ratio, Pðω̂Þ ¼ ðPijeω̂;ij2Þ2=
ðNp

P

ijeω̂;ij4Þ, in Fig. 2(c). A smaller P indicates a more
localized mode and vice versa. Clearly, P starts relatively
small at low ω̂, increases continuously to reach a peak at
intermediate ω̂, and then decreases to rather small values at
high ω̂. This trend in the P spectrum—from quasilocalized,
to extended, and then to localized—again matches the
equilibrium glassy systems very well. More careful inspec-
tion further reveals that at low ω̂ largemotions concentrate on
large-mobility particles, while at high ω̂ they localize at
small-mobility particles. Comparing with previous studies
on glassy systems, our large-mobility particles naturally
correspond to the defective soft spots, and the small-mobility
ones are analogous to the rigid spots [20]. This suggests that
the mobility disorder has an influence similar to the structure
and interaction disorder, raising the intriguing possibility
of a unified understanding.
We illustrate the mode distribution of different-mobility

samples with the spectrum analogous to the reduced
density of states, Dðω̂Þ=ω̂, in Fig. 3(a). To clarify the
influence of particle mobility on the spectrum, we prepare
sample Awith a regular Gaussian hδrii distribution, sample
B with extra small-mobility inactive particles, and samples

FIG. 1. (a) The image of our system. Identical metal spheres
driven by independent motors are connected by springs to form
a 2D square lattice. (b) The spatial fluctuations in both x and
y directions for all particles and frames. The data for each particle
are renormalized by the local variance σ. The red line is the
standard Gaussian function.
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C and D with increasing amount of large-mobility active
particles, as shown in Fig. 3(b). Interestingly, in sample A,
Dðω̂Þ=ω̂ is quite flat at low ω̂, which resembles the 2D
crystal described by Debye model. Similarly, in sample B
the low-ω̂ spectrum remains flat, indicating that adding
inactive particles makes negligible influence. However, as
more and more active particles are introduced into samples
C andD, a low-ω̂ peak develops in an approach resembling
the boson peak formation in glass. These data strongly
suggest that the particles with large mobilities can produce
extra low-ω̂ modes and cause the boson peak, while the
inactive ones have no such effect.
To completely confirm this conclusion, we then tune the

active particles in samplesC andD back to normal activities;
the peak then disappears, as shown in Fig. 3(c) and
Supplemental Fig. 3 [39]. This result unambiguously verifies
that the low-ω̂ peak is indeed caused by large-mobility
particles. Comparing this with the boson peak formation due
to defects in glass, our active particles naturally correspond
to the defective soft spots, which are considered to be the
origin of the boson peak [3]. With the mobility analysis,
our study illustrates that the boson peak could originate with
the mobility aspect, and suggests large mobility as the
possible origin mechanism for the boson peak.
Clearly, the active particles can significantly affect the

low-ω̂ modes. To obtain a complete picture, we further
probe the importance of different-mobility particles
throughout the entire ω̂ range. We pick three typical groups

of particles with small, medium, and large mobilities
respectively, and measure their relative importance in all
eigenmodes. Each group contains 11 particles (9% of total
Np) and the data are shown in Fig. 3(d): as ω̂ increases, the
importance of the large-mobility group changes from
dominant to negligible, while the small-mobility group
exhibits a completely opposite trend. Note that the 9% of
large- and small-mobility particles account for almost
100% of the motion in the low- and high-ω̂ modes,
respectively. By contrast, the medium-mobility group
shows negligible importance at both low- and high-ω̂
regions, and only exhibits a weight comparable to the
other two groups around the intermediate ω̂ indicated by a
hatched area. This hatched region corresponds excellently
to the peak position of the participation ratio in Fig. 2(c), as
we naturally expect from the definition of extended modes.
To obtain an exact understanding on the role of particle

mobility and further achieve desirable manipulation on the
mode spectrum, we systematically introduce highly active
or inactive particles into our system. Active particles all
have mobilities above 240% of normal value, and inactive
particles have mobilities below 45% of normal value. First,
we replace normal particles with Na highly active particles
and plot the cumulative number of modes, Nðω̂Þ, in
Fig. 4(a). Significant change only occurs at low ω̂. More
specifically, the curve with a small amount of active
particles (Na ¼ 5, about 4%) does not show a noticeable
deviation from the original Na ¼ 0 curve, while the curve

FIG. 2. (a) Three typical eigenmodes at small, intermediate, and large ω̂. (b) The spatial correlation function in direction for the three
typical modes. (c) The participation ratio P of all the modes.

FIG. 3. (a) The Dðω̂Þ=ω̂ spectra of four typical samples, A to D, demonstrate the formation of a low-ω̂ peak. (b) The distribution of
time-averaged local displacement, hδrii, for samples A to D. To achieve such distributions, the four samples are driven with different
voltages: A (2.5 V), B (normally 2.5 V with 16.5% of 2 V), C (normally 2.5 V with 20.7% of 3.2 V), andD (normally 2.5 V with 20.7%
of 3.2 Vand 20.7% of 3.6 V). hδrii’s are renormalized to make the main peak locate at 1. (c) Tuning the active particles in sampleD back
to normal activities eliminates the peak. Inset shows the hδrii distribution with and without active particles. (d) The relative importance
of small-, medium-, and large-mobility groups throughout all ω̂. The hatched area where all groups are comparable corresponds to the
peak in the participation ratio.
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with Na ¼ 13 (about 11%) shows a much sharper increase
at the beginning, indicating the appearance of more low-ω̂
eigenmodes.
To obtain a quantitative understanding, we measure the

number of low-ω̂ quasilocalized modes (P < 0.1) in
systems with different Na and plot it in the inset: an abrupt
jump appears around Na ¼ 6 (i.e., 5%), as indicated by the
dashed line. This threshold behavior implies that the low-ω̂
spectrum can only be significantly modified by adding
enough mobile particles. Some typical low-ω̂ modes are
directly visualized in Fig. 4(b), which confirms that large
motions tend to occur at the highly active particles (labeled
by circles). Although in the Na ¼ 13 image only a fraction
of active particles exhibit large motions, other active
particles experience similar large motions in the neighbor-
ing modes not shown here.
We further compare the participation ratio, P, for

systems with different Na against the original Na ¼ 0
system. To reduce random fluctuations, we average P over
ten neighboring modes to obtain P̄, and we calculate the
ratio, P̄=P̄Na¼0, for all the modes. The values of P̄=P̄Na¼0

versus the mode number m (in the direction of increasing
ω̂) are plotted in Figs. 4(c) and 4(d). Again we find two
distinct behaviors: small amount of active particles do not
produce systematic variations at low ω̂, although they seem
to reduce the participation ratio at intermediate and high ω̂
[see Fig. 4(c)]; however, after Na passes the threshold
value, the participation ratio at low ω̂ reduces continuously
with Na [see Fig. 4(d)]. Together with the similar threshold
behavior observed in Fig. 4(a), we conclude that the low-ω̂
spectrum cannot be modified by adding one or two active
particles; instead, a threshold amount is required to create
new spatially correlated low-ω̂ modes (not to just disturb
existing ones, but to create new ones). A similar require-
ment may also hold for the generation of low-frequency
modes in equilibrium glassy systems, although the exact
threshold value may vary with specific conditions such as
dimensionality, pressure, and temperature. The surprising
appearance of the influence of small Na’s on the inter-
mediate- and high-ω̂ modes in Fig. 4(c) is not understood
and calls for further investigation.

Similarly, we can systematically replace normal particles
with inactive particles. We again plot the cumulative
number of modes, Nðω̂Þ, for systems with Ni inactive
particles in Fig. 5(a). Because the inactive particles mainly
affect the large-ω̂ region, we use 1=ω̂ as the x axis, which
better stresses any change at large ω̂. AsNi increases, large-
ω̂ modes are shifted to even higher ω̂. The quantitative
measurements in the inset demonstrate that the number of
high-ω̂ localized modes increases continuously withNi and
saturates at large Ni. This continuously increasing trend
makes a sharp contrast to the abrupt jumping behavior for
Na in the inset of Fig. 4(a); the saturation is possibly due to
the finite size of our system. Direct visualization of the

FIG. 4. (a) The variation in cumulative number of modes Nðω̂Þ as Na active particles are added. Inset: the number of low-ω̂
quasilocalized modes (P < 0.1) versusNa increases abruptly around the threshold value ofNa ¼ 6 (i.e., 5%). (b) Large motions occur at
the active-particle sites (labeled with circles) in the low-ω̂modes. (c) and (d) compare the participation ratio in systems with and without
active particles: panel (c) shows the situation of Na < 6 and panel (d) the situation of Na > 6.

FIG. 5. (a) The cumulative number of modes Nð1=ω̂Þ for
different numbers of inactive particles. Inset: the number of
high-ω̂ localized modes (P < 0.05) versus Ni. (b) Motions are
concentrated at inactive particles (labeled with circles) in high-ω̂
modes. (c) As Ni increases, the participation ratio in the large-ω̂
region decreases significantly.
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high-ω̂ localized modes are shown in Fig. 5(b): large
motions tend to localize on the inactive-particle sites
(labeled with circles) which confirms that the newly added
inactive particles are responsible for these localized modes.
For their influence on participation ratio, we again use the
values in the original system, P̄Ni¼0, as the control and plot
the ratio P̄=P̄Ni¼0 in Fig. 5(c): as Ni increases, the ratio
drops significantly at high ω̂, while no consistent trend is
observed in the low-ω̂ region (see Supplemental Fig. 4 for
more data [39]).
To summarize, the creation of spatially correlated low-ω̂

modes requires the collaboration of quite a few large-
mobility particles, while the generation of localized high-ω̂
modes only needs individual inactive particles. The two
distinct behaviors may also hold in glassy systems, and
they may provide a potential guidance for the manipulation
of mode spectrum in glass.
In conclusion, we have studied the role of particle

mobility in the collective motions of 2D systems. Our
results reveal that large- and small-mobility particles can
significantly affect low- and high-ω̂ modes, respectively,
which enables the spectrum to be effectively manipulated
by adding active or inactive particles. Although our system
is on an ordered square lattice, the difference in particle
mobility causes collective motions very similar to disor-
dered glassy systems. Therefore, the mobility disorder
plays a similar role as the structural and potential disorder;
this suggests a possible unification of all types of disorders.
The quantities based on the time-averaged local displace-
ment hδrii or local Debye-Waller factor can contain
information from both the dynamic and the structural
influences, and may provide a good order parameter for
this unification. Indeed, such an order parameter has
already demonstrated its great potential in the simulation
of jammed spheres [41].
Moreover, we make further speculations on the com-

parison between equilibrium and nonequilibrium systems.
With the knowledge of spring constant k, particle mass m,
and system size, we can theoretically obtain the range of
vibrational frequencies for our lattice as 9.75 to 34.62 Hz.
By assuming that each mode roughly has the energy of
1
2
khδ̄ri2, we can also obtain the frequency range from

covariance matrix measurements, ω̂
ffiffiffiffiffiffiffiffiffi

k=m
p

∼3.6 to
372.7 Hz. Note that this assumption is not strictly valid
due to the lack of energy equipartition, and we make it only
for the comparison with theoretical frequencies. It is
apparent that the two results overlap reasonably well in
the low-frequency regime, while at high frequencies the
latter significantly exceeds the former; this indicates that
equal partition might roughly hold for spatially correlated
low-ω̂modes, while serious breakdown only occurs at high
frequencies. Similar to equilibrium systems, we also find
correlations between real displacements and eigenmodes,
as demonstrated in the projection plot in Supplemental
Fig. 5 [39]. Our study on nonequilibrium systems suggests

the possibility of extending the powerful mode-analysis
approach from equilibrium systems to nonequilibrium
active matter or even biological systems.
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