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Tight-binding analysis of coupling effects in metamaterials
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We established a generalized tight-binding method (TBM) to study the coupling effects in
metamaterials. All parameters involved in our theory can be calculated from first principles, and the
theory is applicable to general photonic systems with both dielectric and magnetic materials. As an
illustration, we applied the theory to study the cutoff waveguides loaded with resonant electric/
magnetic metamaterials. We not only accurately computed the coupling strengths between two
resonant metamaterials, but also revealed a number of interesting coupling-induced phenomena.
Microwave experiments and full-wave numerical simulations were performed to successfully verify
all predictions drawn from the TBM. © 2011 American Institute of Physics.

[doi:10.1063/1.3533948]

I. INTRODUCTION

Electromagnetic (EM) metamaterials are man-made
composite materials composed by subwavelength resonant
microstructures, which possess desired values of permittivity
& and permeability w dictated by these microstructures. Be-
cause of their many potential applications, metamaterials
have attracted extensive attention in recent years.lf6 Lots of
unusual properties have been discovered based on metama-
terials, such as negative refraction,’ superimaging and
hyperimaging,z’3 unusual EM  wave tunneling,4 optical
magnetism,5 polarization control,® and so on. Typically, these
unusual effects were realized by metamaterials that can be
homogenized as effective media, and the physical effects
were well understood by the effective-medium theory (EMT)
theoretically.

Recently, much attention was paid to the phenomena in-
duced by mutual couplings between different elements in a
metamaterial.”'® For example, a coupled multilayer fishnet
structure exhibits completely different EM properties when
one changes the interlayer distance very slightly;7 a
multilayer of split ring resonators with different orientations
was found to exhibit very rich resonance spectra, dictated by
the mutual couplings between adjacent layers;8 the plas-
monic modes in a metal nanoparticle chain exhibit com-
pletely different dispersion relations when stimulated by EM
waves with different polarizations;9 and the transmission/
reflection/absorption  spectrums of a double-stacking
metamaterial structure depend sensitively on the lateral dis-
placement between two layers.lo Apparently, these intriguing
phenomena can not be explained by the EMT.

Very recently, there appears another example induced
by the coupling effects in metamaterials. It was found that
an opaque cutoff waveguide becomes transparent for EM
waves when loaded with electric/magnetic resonant
metamaterials.''™'* A simple EMT was developed to under-
stand such unusual phenomena,13 in which the waveguide is
assumed as an electric (magnetic) plasma for transverse-
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electric (transverse-magnetic) wave, and inserting resonant
structures modify the effective e, s Of the entire system
to make the cutoff waveguide transparent under certain con-
ditions. While the EMT has explained most features of the
experimental and simulation results,“_13 there remain several
features that can not be explained by the EMT. For example,
although the EMT could reproduce the bandwidth of the
transparency band quantitatively, it could not explain why
there are a number of transmission peaks inside the transpar-
ency band and what determines the positions of these
peaks."? Also, the EMT cannot tell us what happens if the
inserted metamaterial layers are arranged nonperiodically.
All these features are actually induced by the couplings be-
tween different resonant metamaterials inside the waveguide,
and thus could not be explained by the simple EMT.

In viewing these previous works,”" we find it highly
desirable to develop an efficient theoretical approach to
study the coupling effects in metamaterials. While full-wave
numerical simulations can in principle yield all information
of EM wave propagations in such systems,7_13 the calcula-
tions are usually time consuming and the obtained results are
not transparent enough to elucidate the inherent physics, par-
ticularly in complicated systems involving both electric and
magnetic resonant materials.® Furthermore, sometimes such
calculations even face difficulties to identify a particular
eigenmode in complex systems, due to the ‘“dark-mode”
problem.'* On the other hand, the tight-binding method
(TBM), originally developed for electronic systems,ls’16 was
recently extended to photonic systems.”_22 The TBM seems
to be a good approach to study the coupling effects in such
systems. Unfortunately, so far the established TBM was only
applicable to systems with nontrivial (7) distribution, (e.g.,
photonic crystals),”_23 not to metamaterial systems in which
both £(F) and w(7) can be nontrivial. More seriously, the
hopping integrals in most previous TBM studies were set as
adjustable parameters, fixed by fitting with full-wave nu-
merical calculations.'” Although some authors did derive
some formulas to calculate the coupling strengths in photo-
nic systems,zl’22 the formulas were obtained based on the
master equation24 rather than the original Maxwell equations.
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Such a simplification makes the calculations for hopping pa-
rameters rather difficult in complex structures, as we will
explain in Sec. II. In addition, the developed theoryzl_23 is
still not applicable to metamaterial systems in which both
&(7) and w(F) are nontrivial.

In this paper, we establish a generalized TBM to study
the coupling effects in photonic metamaterials. Distinct from
previous TBM studies,'” the present theory is based on the
original Maxwell equations and all involved hopping param-
eters can be calculated from first principles without any fit-
ting procedures. In addition, our theory is applicable to pho-
tonic systems where both electric and magnetic materials are
present. While strictly speaking the theory established in this
paper applies to nondispersive media only, we will show
later that it can also be applied to metamaterials with weak
frequency dispersions (e.g., not near their resonance frequen-
cies). As an illustration, we apply the generalized TBM to
study the coupling effects in one particular metamaterial
system—a metallic waveguide loaded with resonant
metamaterials.'' "> We find that the TBM has explained
many features that cannot be explained by the simple EMT,"
both qualitatively and quantitatively. Microwave experi-
ments and finite-difference-time-domain (FDTD) simulations
are performed to verify all predictions drawn from the TBM.

The present paper is organized in the following way. We
first develop the generalized TBM for metamaterial systems
in Sec. II. Some benchmark results are then presented in Sec.
IIT to demonstrate the validity of the theory, and a detailed
comparison with previous TBM was given. In Sec. IV, we
employ the TBM, together with microwave experiments and
FDTD simulations, to systematically study the eigenmode
properties of the loaded waveguide systems with metamate-
rial slabs arranged periodically and nonperiodically. Conclu-
sions are summarized in Sec. V.

Il. TIGHT-BINDING THEORY FOR PHOTONIC
METAMATERIALS

We first establish the generalized TBM for photonic
metamaterials. The TBM is originally developed to describe
the electronic states in solid-state physics.16 In analogy to the
Schrodinger equation, Xu et al.” showed that the Maxwell
equations can be rewritten in a similar form

1% A
i—|¢)=H|d), 1
- t|¢> ) (1)
where the Hamiltonian operator is given by
0 i
A e(7)
H(?) = . ()
-— 0
()

E(7,1) _ N

H(f,r))' Here E(7,t) and H(F,1)
are the electric and magnetic fields, and &(7), u(7) are the
absolute permittivity and permeability distributions of the
system. We assume the system to be isotropic for simplicity.

If the inner product is defined as (¢, | ¢,)=1/2[dP(cE}-E,

and the wave function is |¢>>=(
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+ ,u,IfIT ~Ij12), one can easily prove that the Hamiltonian Hisa
hermitian operator.

Consider a system with several identical scatterers em-
bedded inside a background medium described by g, u;, the
Hamiltonian can be formally written as

H=H,+> V, (3)
Jj

where ﬁo describes the background medium and \A/j the jth
scatterer, which depends on &(7), u(7) of the scatterer. We
consider the situation that there are a series of EM states
trapped by one scatterer, with wave functions exponentially
decaying as leaving the scatterers. This is similar to the elec-
tronic states of a single atom. Consider one such localized
state with eigenvalue w,. Mathematically, there exists a Wan-
nier function satisfying

(Ho + V)| (7)) = wol (7). (4)

Such a Wannier wave function, highly localized around the
Jjth scatterer, can be obtained by either solving Eq. (4) or the
original Maxwell equations. Based on the tight-binding
approximation16 which is apparently valid in such a case, we
can formally rewrite the overall Hamiltonian in a second
quantization form as

ﬁzz(wo+t )aaj+2 laal EH],aa,, (5)
J

where a and a; are the creation and annihilate operators of
EM states at a pomt J, and the hopping parameters are de-
fined as

= <¢J|I:I - (I:IO + ‘A/z)|¢1>/<¢l |
= <¢’j|2 Vi | ). (6)

i#l

Here |¢)) is the wave function of the localized mode trapped
by the /th scatterer. All eigenstates of the entire system can
be obtained by diagonalizing the Hamiltonian matrix

H]l_ w0+ )51+[ (7)

In this paper, we neglect the onsite correction term ¢; ; which
is very small, and only consider the hopping terms between
nearest-neighbor (NN) and next-nearest-neighbor (NNN)
pairs. The calculations can be significantly simplified for a
system with translational invariance symmetry. In that case,
applying a Fourier transformation to Eq. (5), we get

H= Z w(/z)a,éa,;, (8)
k

where w(k) is the dispersion of the photonic band with k
being the Bloch wave vector. For a one-dimensional system,
we find that

(k) = oy + 2ty cos(ka) + 2ty cos(2ka). 9)

Therefore, the EM wave properties of the entire system are
known after the parameters w, fyN, and fyny are determined.
Distinct from many previous TBM studies,'” ™ here all in-
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volved parameters can be directly calculated from Egs. (4)
and (6), without any fitting procedures.

lll. BENCHMARK TESTS ON DOUBLE-WELL MODELS

Before investigating realistic metamaterial systems, we
first apply the theory to study some simple and solvable
models as benchmark tests. The model systems that we con-
sider are metallic waveguides with b X d rectangular cross
sections, inserted with either dielectric slabs or magnetic
slabs.

Consider the first case where the inserted slab is 2a-thick
with a permittivity &;,, then the potential contributed by this
scatterer (the dielectric slab) is found as

0 i(e; —g5") V X
~ , <€ [_ ava]
v={\0 0

0, elsewhere

, (10)

where g, is the absolute permittivity for vacuum (back-
ground medium). Suppose b=d and consider the fundamen-
tal TE,, waveguide mode, we only need to explicitly study
the E, components since other field components can be de-
rived similarly. At frequencies below cutoff, ie., w<w,
=cm/b with ¢ the speed of light, the EM wave inside the
waveguide is evanescent. Meanwhile, if g;, is large enough
50 that ®"=\egy/ ey, X cm/b<w where o™ is the cutoff fre-
quency for the waveguide loaded with the dielectric, local-
ized EM modes can be trapped in the dielectric slab located
in z € [~a,a], with tails exponentially decaying to both sides
of the dielectric slab. Therefore, the wave function of this
trapped mode is

e, z2<-ua
E,~\Ae®+Be™, —a<z<a , (11)
e <, z>a

where A and B are some parameters determined by matching
boundary conditions. This is analogous to the trapped quan-
tum well states in a quantum electronic system,26 with the
high-dielectric medium here behaving as a quantum well for
photons. The concrete wave functions of the trapped states
depend on the detailed model parameters, and can be easily
calculated with a transfer-matrix-method (TMM),”’ slightly
modified for such waveguide case.”®

As an explicit example, we put a 5 mm-thick dielectric
slab (with &;,=10g) into a 50 mm-long waveguide with a
10 mm X 10 mm cross section, and calculate the transmis-
sion coefficient of TE,, mode through the waveguide. The
calculated transmission spectrum is depicted in Fig. 1(a),
from which a localized mode is easily identified at f
=6.567 GHz.*> We will use f to denote the linear frequen-
cies and w to denote the circular frequencies throughout this
paper. We then calculate the distribution of E, at this fre-
quency, and depict the field pattern in Fig. 1(b). The pattern
shows clearly that this is a “quantum well” state for photons.

We now apply the TBM developed in Sec. II to study a
“double-well” system—the same waveguide but loaded with
two identical slabs. For such a system, the Hamiltonian can
be written as the following matrix
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FIG. 1. (Color online) (a) TE,-mode transmission spectrum through a 50
mm-long waveguide (with a 10X 10 mm? cross section) loaded with a 5
mm-thick dielectric slab (g;,=10¢), calculated by the TMM, (b) field dis-
tribution of E| calculated by the TMM at f=6.567 GHz.

ﬁl:(w" tNN). (12)

INN @

Diagonalizing the Hamiltonian matrix (12), we found two
eigenstates with eigen frequencies and wave functions given
by

e {wO"’tNNv ) = b1) + | b
wo—tans (W) =1) =)

Let us first identify the sign of the hopping integral fyy. We
find from Eq. (6) that

tNNz<¢l|f/l|¢2>/<¢l 1)
I
(¢ l1) J gtapi

[+ 1 L
10 ‘Lin(r*)_so}vx [152('?} (14)
0 0 Hz(’”)

(13)

A e E} (), H{(7)]

in which the integration is over the region where the slab 1 is
located, and E,(7), E,(7) are the wave functions of the eigen-
modes trapped by the two slabs. A straightforward calcula-
tion shows that

1 S -
= ——(gp— &)W f dPE; - E,. (15)
N <¢1 |¢1> 0 e slab 1 1 ?

It is easy to prove that the normalization constant
—al2

@ 100=2 Py ol )

—o0
al2

3 S S =
+f dr (SinEl'El+lu’0Hl'H1)?
—-al2

yields a positive value here. Noting that g;,> ¢, inside the
slab and that ET-EZ>O in slab 1 [see Fig. 1(b)], we identify
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FIG. 2. (Color online) (a) TE;;-mode transmission spectrum through a 50
mm-long waveguide loaded with two dielectric slabs separated by a distance
15 mm, calculated by the TMM. Normalized field distributions of E). calcu-
lated by the TMM at frequencies (b) f;=6.497 GHz and (c) f,
=6.640 GHz.

from Eq. (15) that the hopping integral is a negative value
(tnn<0). Therefore, Eq. (13) tells us that, for such a double-
well system, the lower (higher) frequency mode exhibits an
even (odd) symmetry.

We now determine the absolute value of fyy, assuming
that the two slabs are separated by a distance 15 mm. Put the
calculated wave functions of a single mode [Ey component
has been shown in Fig. 1(b)] and other necessary parameters
into Eq. (15), we performed the integrations numerically.
The calculated result is #yn=—0.071 X 27 GHz. Therefore,
the TBM predicts that the two resonance modes for this
double-well system should be at 6.496 GHz and 6.638 GHz
(linear frequencies), respectively.

Numerical calculations are performed to verify the
above TBM predictions. Figure 2(a) depicts the transmission
spectrum for a waveguide loaded with two such slabs. Two
eigenmodes with eigen frequencies f;=6.497 GHz and f,
=6.640 GHz are clearly identified in the spectrum,29 whose
positions are in excellent agreements with the TBM results
labeled by two vertical lines. We further calculated the wave
functions of these two eigenmodes, and illustrated the nor-
malized E -field distributions in Figs. 2(b) and 2(c) for the
lower and higher frequency modes, respectively. It is clearly
shown that the lower frequency mode at f; exhibits an even
symmetry (the |¢)+|®,) type), and the higher frequency
mode at f, exhibits an odd symmetry (the |¢,)—|b,) type),
verifying the predictions of the TBM.

Distinct from previous TBMs which are limited to “elec-
tric” photonic systems,lL23 the present TBM is much more
general and can be applied to study “magnetic” photonic
systems as well. As an illustration, we studied the 7TM;,
mode transmission properties of the same waveguide but
loaded with a 5 mm-thick magnetic slab (with w;,=10x,).
The calculated transmission spectrum is depicted in Fig.
3(a), where a localized mode is easily identified at f
=8.500 GHz.*’ From the H, field pattern depicted in Fig.
3(b) for this mode, we understand that this is again a “quan-
tum well” state for photons, but contributed by the magnetic
slab. Following the TBM, we find that the hopping integral is
now determined by
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FIG. 3. (Color online) (a) TM,,-mode transmission spectrum through a 50
mm-long waveguide loaded with a 5 mm-thick magnetic slab (u;,=10u),
calculated by the TMM, (b) Field distribution of H, calculated by the TMM
at f=8.500 GHz. '

1 S -
= (o — w4 )wf dPH’ - H,, (16)
Mgy T T

with the normalization constant given by

—al2
(& ¢1>=2f de(SOET‘EH'MOHT‘HI)

al2
)
—al2
Set the distance between two magnetic slabs as 15 mm, we
performed numerical TMM calculations to find that
tnn=—0.0194 X 27+ GHz. Figure 4(a) depicts the TM;-mode
transmission spectrum through the waveguide but loaded
with two such magnetic slabs separated by a distance of 15
mm. Similar to the electric case, two eigenmodeszg are found
at frequencies f;=8.480 GHz and f,=8.519 GHz in the
spectrum, whose positions are in excellent agreements with

Transmission

H -Field

FIG. 4. (Color online) (a) TM,,-mode transmission spectrum through a 50
mm-long waveguide loaded with two magnetic slabs separated by a distance
15 mm, calculated by the TMM. Normalized field distributions of H), cal-
culated by the TMM at frequencies, (b) f,=8.480 GHz and (c) f,
=8.519 GHz.
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the TBM results labeled by two vertical lines. We note that
tnn also takes a negative value here, similar to the previous
electric case. Therefore, Eq. (13) tells us that the symmetries
of the two eigenmodes are the same as those of the electric
system. Indeed, the calculated wave functions of these two
eigenmodes (Fig. 4) show that the lower (higher) frequency
mode exhibits an even (odd) symmetry, again in perfect
agreement with the TBM predictions [Eq. (13)].

The two benchmark tests presented above clearly illus-
trate the advantages of our theory as compared to previous
versions of TBM.""> Whereas the hopping parameters in
most previous studies were set as adjustable parameters,”_20
the present theory has provided a first-principles approach to
determine these parameters. Although a TBM version®'??
was previously available to compute the absolute values of
the hopping parameters, that theory was limited to electric
photonic systems. Furthermore, the hopping integral in that
theory22 can be written as

fan = < f H (P
b 2w0<ﬁ2(f)| ﬁz(’?)> scatter 1 1
.v{( 1* —i>v xﬁz(f)}df{ (17)
8in(r) €0

which is much more complicated than our results. In particu-
lar, expanding Eq. (17), we find that there is inevitably a
complicated surface integral over the interface between
background medium and the scatterer [see Eq. (2.20) in Ref.
22], which comes from the term V[1/&(r)] in Eq. (17). This
is because the Hamiltonian adopted there®'?? is derived from
the master equation instead of the original Maxwell equa-
tions. In cases where &(r) is highly inhomogeneous and/or
the scatterer/medium interface is complex, the calculations
based on Eq. (17) are very difficult to handle. In contrast, our
Hamiltonian is derived from the original Maxwell equations
so that it does not contain such a troublesome V[1/&(r)]
term. As the results, the calculations for the hopping integrals
are much easier to handle in our theory, particularly for
structures with complex &;,(7) distributions and scatterer/
medium interfaces. Finally, the present theoretical treatment
differs sharply from many previous theories. For example, a
plane-wave contribution is included to account for the back-
ground medium in Ref. 17, while it is subtracted from the
scattering potential matrix in present approach.

IV. APPLICATIONS TO REALISTIC SYSTEMS

Encouraged by the promising benchmark results ob-
tained on the double-well models, in this section, we apply
the TBM to study the realistic systems—a WR90 waveguide
[with a 22.86X10.16 mm? cross section, see Fig. 5(a)]
loaded with multiple slabs of electric resonant metamaterials.
The metamaterial that we designed is a metallic cross struc-
ture deposited on a dielectric substrate, with geometry shown
in Fig. 5(a).

Following the TBM, we first calculate the properties of
the eigenmode trapped by one scatterer. Put one electric
metamaterial slab into the waveguide, we employ the FDTD
method™® to calculate the transmission spectrum through the
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FIG. 5. (Color online) (a) (Left) A picture showing the WR90 waveguide
and the electric resonant metamaterial adopted in our experiments; (right)
geometry of the unit cell structure with parameters g=11.43 mm, 2a
=1.2 mm, /=9 mm, /,=7.4 mm, w=0.2 mm. Here the dielectric constant
of the substrate is 3.5, (b) TE;,-mode transmission spectrum through a 10
mm-long waveguide loaded with one metamaterial layer, calculated by
FDTD simulations.

loaded waveguide under the TE;, mode excitation. The
FDTD-calculated spectrum is depicted in Fig. 5(b), showing
that there is indeed a localized mode trapped by the metama-
terial slab with eigen frequency f=3.74 GHz, far below the
waveguide cutoff frequency f.=6.56 GHz denoted by a
dashed line. FDTD simulations revealed that this trapped
mode has similar eigenwave properties as that depicted in
Fig. 1(b). However, the local EM field distribution is very
complicated induced by the scatterings of the metallic ele-
ments, especially at the vicinities near the metamaterial
structure. Such complicated local field distributions make it
difficult to directly compute the hopping parameters employ-
ing the TBM established in Sec. II. More seriously, the sin-
gular behaviors of &(7) inside a metal further complicate the
theoretical treatment established in Sec. II.

This problem can be solved with the concept of
“metamaterials.” We note that the realistic metamaterial slab
[as shown in Fig. 5(a)] can be treated as a homogeneous 1.2
mm-thick effective-medium slab with relative dielectric con-
stant given by &"=1+(280/5.082—f2)+(1950/15.95*~f2).
To prove this point, we employ the FDTD method to calcu-
late the transmission spectrum of normally incident plan
waves through a realistic metamaterial slab (with microstruc-
ture periodically repeated), and compare the result with that
calculated on the effective-medium slab. Good agreement is
found between the two spectra, as seen from Fig. 6. The
discrepancies near the resonance frequency are caused by
standard Fabry—Perot interferences in the effective medium
slab. We further employ the FDTD method to recalculate the
TE)-mode transmission spectrum for the same waveguide,
but with the realistic metamaterial slab replaced by the
effective-medium slab. The calculated spectrum shows that a
resonance mode appears essentially at the same frequency.
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FIG. 6. (Color online) Normal-incidence plane-wave transmission spectra
for a realistic metamaterial (MTM) slab and a homogeneous model slab with
si,"= 14(280/5.082—f%)+(1950/15.95>—f?), calculated by FDTD
simulations.

These two facts have unambiguously demonstrated the valid-
ity to treat the complicated metamaterial slab by an effective-
medium slab. Such a replacement greatly simplifies our cal-
culations, and makes the calculations tractable. However, we
note that the effective-medium slab possesses a frequency
dependent permittivity, while the TBM developed in Sec. 11
only works for nondispersive medium in principle. Fortu-
nately, when the interlayer distance is large enough so that
the hopping integral is small, we expect that the frequency
dispersion of the permittivity is not important, and therefore
the present theory is still valid.

Treating the realistic structure as a homogeneous slab to
obtain all information of the eigenmode trapped by a single
slab, and assuming the distance between two adjacent slabs
as 10 mm, we followed the approach as we did in Sec. III to
calculate all the hopping parameters. The obtained TBM pa-
rameters are

wy=3.74 X 2 GHz, tyy=-0.338
X 27 GHz, tynn=—0.08 X 277 GHz. (18)

We emphasize that this set of parameters are obtained from
direct calculations based on our theory, without using any
adjustable parameters.”_20 Using this set of parameters, we
can employ the TBM to calculate the eigenmode properties
in those systems with arbitrary number of slabs. Given a
particular configuration, we can diagonalize the correspond-
ing Hamiltonian matrix to get not only all the eigenmode
frequencies, but also the EM wave distributions for each
mode. While full-wave numerical simulations can yield simi-
lar information, the TBM calculation is much simpler, and
can provide much more physical insights. In particular, we
will show later that the TBM can help us identify some
eigenmodes with very weak strengths, which are difficult to
detect in FDTD simulations.

We employed the TBM to calculate the eigenmodes in
the waveguides loaded with 2, 3, 4, and 5 layers. The calcu-
lated eigenmode frequencies (linear frequencies) are labeled
by solid lines in the right panels of Figs. 7(a)-7(d), corre-
spondingly. For a system with N inserting slabs, the Hamil-
tonian matrix is NXN yielding N eigen frequencies, as
shown in Fig. 7. To validate the TBM, we performed micro-
wave experiments and FDTD simulations™ to study the
transmission spectra through the WR90 waveguides loaded
with 2, 3, 4, and 5 metamaterial slabs (keeping the interlayer
distance as 10 mm). In our experiments, we used a 5 mm-
long monopole antenna to excite the TE;, mode at the front
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FIG. 7. (Color online) Experimental (left) and FDTD (middle) results of the
transmission spectrum for the waveguides loaded with (a) 2, (b) 3, (c) 4, and
(d) 5 metamaterial slabs. Right panels depict the positions of the eigen-
modes predicted by the TBM.

side of the loaded waveguide, and employed another identi-
cal antenna to measure the signals transmitted through the
waveguides. The experimental setup is basically the same as
that in Ref. 13 (see Fig. 1 in Ref. 13). The experimental and
FDTD simulation results are shown in the left and middle
panels of Figs. 7(a)-7(d), for waveguides with 2, 3, 4, and 5
metamaterials slabs, correspondingly. First, we note that the
FDTD results are generally in good agreements with the ex-
perimental spectra. More importantly, we note that the posi-
tions of those transmission peaks (both in FDTD and in ex-
periments) are in rather satisfactory agreements with the
eigen frequencies predicted by the TBM. In particular, we
note that some eigenmodes [say, the highest mode in Figs.
7(c) and 7(d)] possess relatively weak couplings with exter-
nal fields so that they are not easy to identify from experi-
ments. In such cases, the TBM is particularly helpful to pick
up those “dark” eigenmodes.

The TBM can also be applied to study the system with
infinite numbers of metamaterial slabs arranged periodically.
For such a periodic system, the eigenmodes inside the sys-
tem form an energy band, with dispersion relation given by
Eq. (9). Putting the TBM parameters of Eq. (18) into Eq. (9),
we calculated the dispersion relation and depicted the spec-
trum in Fig. 8 as open circles. Again, we performed numeri-
cal calculations to verify the TBM predictions. Treating the
realistic metallic structures as homogeneous metamaterial
slabs, we employed the TMM (Ref. 28) to calculate the EM
wave dispersion relation, and drew the results in Fig. 8 as

—~
E 16 *ﬁ* **
E &
~ X -
28 S
= )
g o ‘““"“‘“‘«u««m«m««««
g
2 0 (@
] T

0.0 0.5 |

ka/n

FIG. 8. (Color online) EM wave dispersion relations inside the loaded
waveguides calculated by three different methods.
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FIG. 9. (Color online) Geometries of two studied waveguides loaded with 4
metamaterial slabs arranged nonperiodically. Solid curves schematically
show the wave functions of the eigenmodes trapped by particular slabs.

solid lines. We then employed the FDTD simulations™ to

compute the EM wave dispersion relation of the system with
all microstructures fully taken into account. The FDTD-
calculated dispersions are depicted as solid stars in Fig. 8.
We can easily identify the upper branch as the waveguide
mode with a cutoff frequency at 6.56 GHz. For this branch,
we do not have the TBM results because the tight-binding
approximation is no longer valid. On the other hand, the
lower branch in the waveguide cutoff region is responsible
for the anomalous high transmissions in the loaded
waveguides.“fn For this branch, we find that the dispersion
relations computed by the TMM and FDTD simulations are
in good agreements with the TBM results. Such good agree-
ments reinforced the notion that the TBM works quite well
for such metamaterial systems.

In addition, the TBM developed in this paper can be
employed to study the systems with slabs arranged not peri-
odically. In what follows, we study two waveguide systems
with 4 inserting slabs, obtained by removing one particular
slab from a 5-slab periodic system. Such systems are rela-
tively easy to study since we do not need to introduce addi-
tional TBM parameters, although the TBM developed here is
not limited to such cases. In the first system as schematically
shown in Fig. 9(a), we assume that the second slab is re-
moved from the 5-slab system. We find that the Hamiltonian
matrix is written as

(O 5 15 NNN 0 0

A 1

H' = EtNNN ®y NN I |- (19)
0 INN @y INN
0 INNN INN @

It is worth noting that the matrix element H| , describing the
hopping between the first and third slabs is not fyyy, but
acquires a factor of 1/2. The physics can be understood from
the following argument. From Eq. (6), we understand that the
dominant contributions to the NNN hopping term should be

= D1 Vil ds) (b3 [hs) =iV + Vol b3}/ (s [ ps). T
we remove the second slab (i.e., \72=0), the hopping between
the first and third slabs becomes ~(¢;|V,|b3)/ (s |b3). As
seen from Fig. 9(a), to the lowest-order approximation, the

product of two wave functions ¢, - ¢; yields almost the same
value in regions occupied by slab 1 and slab 2 (which is

vacant here). Therefore, we have approximately (¢, |V,|s)

J. Appl. Phys. 109, 023103 (2011)
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FIG. 10. (Color online) Experimental (left) and FDTD (middle) results of
the transmission spectrum for the waveguides loaded with 4 metamaterial
slabs, arranged following the geometries depicted in Fig. 9. Right panels
depict the positions of the eigenmodes predicted by the TBM.

~(|Valps)=(1/2)(¢y|V,+Vs|p3), and in tum, H],
=~ (1/2)txnn- We note that this argument holds for all tight-
binding systems, including both photonic and electronic
ones. Diagonalizing this Hamiltonian matrix (19), we find
four eigen (linear) frequencies, and label their positions as
solid lines in the right panel of Fig. 10(a).

If the removed slab is the third one as shown in Fig.
9(b), the Hamiltonian matrix is found as

(O0) tNN 0 0

INN g EtNNN 0
H' = . (20)

0 EINNN wy  INN
O 0 tNN [Oh)

Based on the same argument, we found that the hopping
integral between the second and fourth slabs is (1/2)f\nN
instead of rynn. Again, the eigen (linear) frequencies ob-
tained by diagonalizing the above matrix are depicted in the
right panel of Fig. 10(b) as solid lines.

As shown in Fig. 10, the mode structures for these two
systems are quite different although they both contain four
slabs. For example, the middle two states are approaching
each other in case 1, but in case 2, states 1 and 2 are ap-
proaching each other. These are caused by the modified ef-
fective hopping between adjacent layers, as already shown in
Egs. (19) and (20). Again, microwave experiments and
FDTD calculations were performed to study the transmission
spectra for these two particular systems. As shown in Fig. 10,
the measured and the calculated spectra, which are in reason-
able agreements with each other, show that the transmission
speaks are in reasonable agreements with the TBM predic-
tions. In particular, both experiments and FDTD simulations
reproduced the mode structures predicted by the TBM,
which demonstrates again the validity of the TBM in such
systems.

We note that some discrepancies nevertheless exist be-
tween the TBM and FDTD/experimental results, particularly
in multilayer systems (see Figs. 7 and 10). Such discrepan-
cies are possibly caused by the omission of frequency dis-
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persion in the present theory. Another possible reason is that
the effective parameters obtained based on a single slab may
change slightly when we study a multilayer system.

V. CONCLUSIONS

To summarize, we have established a generalized TBM
to study the coupling effects in photonic metamaterials. The
advantages of our theory are that it can determine all in-
volved parameters from first principles, and can be applied to
general photonic systems with both dielectric and magnetic
materials. Taking the cutoff waveguides loaded with resonant
metamaterials as explicit examples, we applied the TBM to
study various interesting phenomena induced by the coupling
effects in metamaterials. Our results showed that the TBM
can provide not only quantitative measures on the coupling
strengths between different resonant units, but also other in-
formation such as the symmetries of the eigenmodes, the
resonant peak positions and the dispersion relations in peri-
odic and even nonperiodic systems. Microwave experiments
and FDTD simulations on realistic systems were performed
to verify all the predictions drawn from the TBM. We believe
that the present TBM, with some further developments to
take the materials’ frequency dispersions into account, can be
employed to study many other metamaterial systems in
which the coupling between different resonant units play im-
portant roles.
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The response (i.e., transmittance and reflectance) should diverge when the
system is stimulated at its eigenmode frequency. Here we add a tiny loss to
make the transmittance still finite for the purpose of better illustration.

*CONCERTO 7.0, Vector Field Limited, England, 2008. A basic mesh
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structures, and finer meshes were adopted wherever necessary. Conver-
gences were carefully tested in our simulations. Appropriate Bloch bound-
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