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ABSTRACT

Recently, Pancharatnam–Berry (PB) metasurfaces have exhibited powerful capabilities to control spin-polarized light. However, the adopted
abrupt PB phase, introduced by simply rotating the basic elements, is spin-locked with opposite signs for different spin excitations, greatly
limiting their practical applications. Here, we introduce a high-efficiency and broadband spin-unlocked metasurface with two mechanisms of
a resonance phase and a geometric phase perfectly combined together. The design strategy is quite simple just through changing one geomet-
ric parameter rather than multi parameter optimization. As a proof of concept, the anomalous photonic spin Hall effect based on the spin-
unlocked metasurface is demonstrated first, showing high experimental efficiency (over 80%) in a broad frequency range (11.3–16.6GHz).
Furthermore, another spin-unlocked metasurface is built to demonstrate the completely independent wavefront manipulations, i.e., the
focusing effect and anomalous reflection. These findings significantly expand the electromagnetic control ability of a metasurface.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091051

Electromagnetic metasurfaces, the two-dimensional (2D) equiva-
lent of metamaterials, have been widely investigated as an ultrathin and
compact platform for powerful manipulation of light.1–7 Many fascinat-
ing effects and applications are extensively explored such as anomalous
refraction/reflection,8,9 flat metalens,10–12 meta-holography,13–16 surface
wave excitation and control,17–20 spin and orbital angular momentum
manipulation,21–24 unidirectional scattering,25 asymmetric transporta-
tion,26 anti-reflection,27,28 and many others.29–36 In general, the practical
design of metasurfaces should rely on the local wave modulation
enabled by varying the size (related to a resonance phase) and rotating
angle (related to a geometric phase) of their individual artificial compos-
ite, i.e., meta-atoms.

As an example, anisotropic meta-atoms simply rotated by a can
render a spin-dependent Pancharatnam–Berry (PB) geometric phase

(e�ir2a).14,37–44 Clearly, such responses of two opposite spin compo-
nents [i.e., left circularly polarized (LCP, r¼ 1) and right circularly
polarized (RCP, r¼�1)] are essentially locked with the inverse phase
profile, greatly limiting the information multiplexing [see Figs. 1(a) and
1(b)].15,45,46 Recently, the resonance phase or propagation phase as a
new degree of freedom can combine with the PB phase for a traditional
PB metasurface to break the spin-correlated functional response [see
Figs. 1(c) and 1(d)].47 However, these designs either do not consider effi-
ciency, which mainly attribute to the challenge to preserve the half-wave
plate condition for all meta-atoms with their geometries continuously
changed.5,48–50 Meanwhile, most previous proposals are usually quite
complex,51–58 e.g., relying on the optimizations of multiple parameters.

In this work, we propose a simple metasurface design to realize
high-efficiency spin-unlocked wavefront engineering within a broad
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frequency band. The building block cannot only provide a broadband
resonance phase via simply tuning one geometric parameter but also
always preserve its high polarization conversion ratio (PCR). As a
proof of concept, an anomalous photonic spin Hall effect (APSHE)
showing asymmetrical spin splitting is demonstrated based the spin-
unlocked metasurface illuminated by a linear polarization (LP) wave.
The experimentally measured efficiency can reach over 80% within
11.3–16.6GHz. Furthermore, the more general spin-unlocked bifunc-
tional EM manipulations are also realized such as the focusing effect
for the LCP wave and anomalous reflection for the RCP wave. We
firmly believe that, beyond the functions that are demonstrated in this
work, more complicated high-performance dual-functionalities are
easily realized following the proposed design principle. Our works pro-
vide a simple and powerful design scheme for spin photonics devices
and expand the scope of metasurface-based polarization optics.

It is known that PB metasurfaces, composed of a series of meta-
atoms with the identical structures but different orientations, can
modulate the wavefronts of spin-polarized EM waves at will. While
providing a phase distribution for the incident light with a certain CP
(e.g., LCP), the metasurface will concomitantly achieve a contrary
phase distribution for another CP (e.g., RCP) light, leading to the spin
locked dual-functionalities as schematically shown in Figs. 1(a) and
1(b). To break such a correlation, we present the concept of the spin-
unlocked metasurface via combining the freedoms of geometries and
orientations into the designs of meta-atoms. As shown in Figs. 1(c)
and 1(d), we can completely independently design the phase distribu-
tions for the incident light with different chirality. For example, the
metasurface encoded with two different phase profiles can deflect the
input LP beam to two asymmetrical non-specular reflection directions
carrying different spins as shown in Fig. 1(c), giving rise to the
APSHE. By carefully designing a spin-unlocked metasurface exhibiting
a parabolic reflection-phase profile for LCP light and a linear-phase
profile for RCP light, we can realize further two distinct functionalities
as shown in Fig. 1(d).

We next introduce the basic concept to design a high-efficiency
spin-unlocked metasurface. For an ideal PB metasurface, the compos-
ite meta-atom should possess specific anisotropic geometry behaving
like a half-wave plate to completely flip the spin state of incident CP

light.21,39 The transmission/reflection phase distribution of such a
metasurface can be generally described by / x; yð Þ ¼ /re þr/PB x; yð Þ.
Here, /PB x; yð Þ is the PB phase profile determined by the meta-atoms’
orientations a x; yð Þ [i.e., /PB x; yð Þ ¼ 2a x; yð Þ], and r ¼ 61 repre-
sents two different spin states of the input CP wave. Meanwhile, /re
is a spin-independent basic phase shift originating from the EM
resonances of the meta-atoms. Furthermore, if we introduce the inho-
mogeneous resonance phase distribution /reðx; yÞ via individually
designing the dimensions of the local meta-atoms, two distinct phase
profiles /L x; yð Þ and /R x; yð Þ can be encoded inside one metasurface
for two different spin states

/re x; yð Þ þ /PB x; yð Þ ¼ /L x; yð Þ;
/re x; yð Þ � /PB x; yð Þ ¼ /R x; yð Þ:

(
(1)

As a result, two independent wavefront modulations can be offered by
such a single metasurface. It should be noted that, although the spin-
unlocked metasurfaces have been intensely explored, the wideband
and high-efficiency performance still remains a challenge considering
that all the meta-atoms of different dimensions should always satisfy
the criterion of behaving like a half-wave plate in order to suppress the
undesired normal mode.

We will introduce a dual-functional reflective metasurface with
high efficiency and a broad frequency band. As a proof of concept,
two linear phase profiles of different slopes are encoded inside the
metasurface for LCP and RCP cases, creating the APHSE as schemati-
cally depicted in Fig. 1(c)

/L x; yð Þ þ k0 sin hiLð Þx ¼ k0 sin hrLð Þx;
/R x; yð Þ þ k0 sin hiRð Þx ¼ k0 sin hrRð Þx;

(
(2)

where hiL and hiR (hrL and hrR) are the incident (reflective) angles for
the impinging (outgoing) LCP and RCP beams, respectively, and k0 is
the total wavevector of an electromagnetic wave in free space. Next, we
can further build up a spin-unlocked metasurface to realize more com-
plex bifunctional wavefronts as schematically shown in Fig. 1(d),
where /L x; yð Þ and /R x; yð Þ; respectively, exhibit the parabolic and
linear profiles

FIG. 1. Schematics of spin-locked wave-
front modulations for traditional PB meta-
surfaces and the proposed spin-unlocked
metasurfaces. (a) A traditional PB meta-
surface for realizing spin-dependent
anomalous reflection along two mirror-
symmetrical directions, i.e., photonic spin
Hall effect (PSHE). (b) A traditional PB
metasurface for realizing the spin-locked
focusing and defocusing effect. (c) and (d)
The proposed spin-unlocked metasurfa-
ces for achieving completely independent
bifunctional wavefront manipulations such
as (c) mirror-asymmetric anomalous
PSHE and (d) the focusing and anoma-
lous reflection effects for two opposite
spin waves.
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/L x; yð Þ ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ x2 þ y2ð Þ

p
� F2

� �
;

/R x; yð Þ þ k0 sin hiRð Þx ¼ k0 sin hrRð Þx;

8<
: (3)

where F denotes the focal length. Obviously, we can substitute Eq. (2)
or Eq. (3) into Eq. (1) to obtain both the /re x; yð Þ and /PB x; yð Þ for
achieving the desired dual-functionalities, which can guide us to deter-
mine the geometric parameters of the metasurfaces, i.e., the geometric
sizes and orientations of the meta-atoms at each local position.

We next introduce the practical designs of the desired meta-atoms
that should not only provide desired resonance phase modulations but
also meet the half-wave plate condition within a broad band. As shown
in Fig. 2(b), the building block is a sandwich structure consisting of a
metallic bending-H-shaped resonator and a ground metallic plane sepa-
rated by a 3mm-thick dielectric spacer (er ¼ 3þ 0:01i). We can flexi-
bly modulate the resonance phase just by varying the opening angle h of
the meta-atom. Figures 2(c) and 2(d) depict finite-difference time
domain (FDTD)-simulated PCR (described by jrLLj2) and spin-
independent resonance phase /re [described as arg(rLL)] as functions of
the opening angle and frequency. It should be noted that the spin state
of an anomalous reflection beam is eventually conserved considering
that the direction of an outgoing beam is reversed in such a reflection-
type system. We can see that PCR of the meta-atom can approach
100% within a broad frequency band of 10–18 GHz [see Fig. 2(c)],
implying that these meta-atoms of different dimensions can always pre-
serve the half-wave plate condition. The underlying mechanism of our
meta-atom is explained as follows. Illuminated by impinging waves, the
electric currents are induced inside the top bending-H structure and the
bottom ground plane, giving rise to the magnetic resonance. While
the opening angle of the H structure is varied, the resonance frequencies
for two orthogonal LPs can be tuned simultaneously. Via carefully

optimizing the Q factor and structural anisotropy, the half wave plate
condition can be well maintained in a broad band. Moreover, the /re
can cover a large modulation range within the broad band. Therefore,
we can utilize the relation of /re � h to obtain a series of meta-atoms to
construct the desired dual-functional metasurface. In addition, the PB
phase profile only depends on the orientations of local meta-atoms, i.e.,
/PB x; yð Þ ¼ 2a x; yð Þ. Finally, the desired spin-unlocked metasurface
achieving two completely independentwavefronts can be obtained based
on the database presented in Fig. 2.

As a proof of concept, a spin-unlocked metasurface working at
the microwave regime for achieving APSHE has been experimentally
demonstrated. Here, the anomalous reflection angles of the spin-
unlocked metasurface are designed as hrL ¼ �30� and hrR ¼ 50�;
respectively, for two opposite spin waves at 12GHz. Figure 3(a) shows
the experimental setup to measure the scattered far-field distribution
of the fabricated metasurface. Obviously, both the geometric sizes and
orientations of the meta-atoms are varied along the x direction. FDTD
simulated reflection phase distributions of the spin-unlocked metasur-
face for two opposite spin states at 12GHz are shown in Fig. 3(b),
according to the theoretical designs of Eq. (2). Here, a source horn is
placed above the metasurface to shine a normally incident CP plane
wave on the metasurface, and another CP receiver horn is rotated to
measure the scattered electric field intensities of the specific spin state.
Two CP horn antennas are connected to a vector network analyzer
(Agilent E8362CPNA). Figures 3(c) and 3(d) depict the angular distri-
butions of scattered electric field intensities at three representative fre-
quencies of 10, 12, and 16GHz for the spin-unlocked metasurface. As
the metasurface is illuminated by the LCR or RCP beam, the opposite
spin waves are steered to asymmetrical directions, exhibiting the so-
called APSHE as depicted in Fig. 1(c). Obviously, experimental mea-
surements match well with FDTD simulations.

FIG. 2. Physical concept and practical design of the spin-unlocked metasurfaces. (a) Schematic of the spin-unlocked metasurface built by combining both the resonance phase
/reðx; yÞ (depending on the size of the microstructure) and the PB phase (depending on the orientation of the microstructure) with the total phase response described by
/ x; yð Þ ¼ /re x; yð Þ þ r/PBðx; yÞ. (b) Picture of the meta-atom (sized 6� 6 mm2) array composed of a metallic bending-H-shaped resonator (with r¼ 2.5 mm) and a metal-
lic mirror separated by a 3mm-thick dielectric layer. Here, the opening angle h is a tunable parameter to modulate the resonance phase. (c) and (d) FDTD simulated PCR (c)
and resonance phase /re (d) for the meta-atoms as functions of opening angle h and frequency.
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The spin-unlocked metasurface can achieve high-performance
APSHE within a broadband frequency. Figures 4(a) and 4(e) [Figs.
4(c) and 4(g)] show the FDTD-simulated (experimentally measured)
co-polarized and cross-polarized angular distributions of scattered

electric far-field intensities for LCP (jþi) incidence. Similarly, Figs.
4(b) and 4(f) [Figs. 4(d) and 4(h)] show the FDTD-simulated (experi-
mentally measured) co-polarized and cross-polarized angular distribu-
tions of scattered electric far-field intensities for RCP (j�iÞ beam

FIG. 3. Characterization of the anomalous
photonic spin Hall effect by the proposed
spin-unlocked metasurface. (a) Schematic
of the scattered far-field measurement
setup in our experiments. The inset
depicts the picture of the part of the fabri-
cated sample with both the sizes and ori-
entations of the meta-atoms varied along
the x direction. (b) The reflection phase
distributions along the x direction of the
spin-unlocked metasurface illuminated by
the LCP and RCP beam at the designed
frequency 12 GHz. (c) and (d) Measured
and simulated normalized angular far-field
distributions of the spin-unlocked metasur-
face for LCP (c) and RCP (d) light inci-
dence at several frequencies.

FIG. 4. Verification of high-efficiency and broadband APSHE. Simulated (a), (b), (e), and (f) and measured (c), (d), (g), and (h) normalized scattered-field intensities (color
map) vs frequency and detecting angle for the spin-unlocked metasurface illuminated by normally incident LCP (a) and (e) and (c) and (g) and RCP (b) and (f) and (d) and (h)
beams with receivers chosen as a LCP (a) and (f) and (c) and (h) and RCP (b) and (e) and (d) and (g) antennas, respectively. Here, solid lines in (a)–(d) are calculated in Eq.
(2) under the normal-incidence condition. (c) and (f) APSHE efficiencies retrieved by simulation (i) and (j) and experiment (k) and (l) data vs frequency for LCP (i) and (k) and
RCP (j) and (l) incidences.
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incidence. Both of FDTD simulations and microwave experiments
demonstrate that the asymmetrically anomalous reflections indeed
exist within a quite broad frequency (8–18 GHz) for LCP and RCP
incidences, agreeing well with the theoretical prediction (solid line) of
Eq. (2). In Fig. 4(b) or Fig. 4(d), since the phase gradient d/R=dx is
larger than k0 below the frequency 9.2GHz, the anomalous reflection
beam will disappear in the far-field. As shown in Figs. 4(e)–4(h), the
normal reflection modes carrying the opposite spin state are extremely
small, implying the high performance of the meta-device. Figures 4(i)
and 4(j) [Figs. 4(k) and 4(l)] exhibit the retrieved efficiencies of
APSHE from simulations (experiments) at different frequencies, which
are defined by the ratio between the integrated power of the anoma-
lous reflection beam and that of the impinging beam. Our experimen-
tal results indicate that the spin-unlocked metasurface possesses high
efficiencies of over 80% within about 11.3–16.6GHz. Owing to the dis-
tinct deflection angles, the spin-decoupled metasurface shows different
efficiencies for LCP and RCP cases [see Figs. 4(i)–4(l)]. Such a differ-
ence becomes significant for the large beam deflection region, where
the local field approximation will be not valid anymore.59,60

Except for APSHE, more complex spin-unlocked bifunctional
wavefront modulations have been further demonstrated. Based on
the same database of meta-atoms presented above, we design a
bifunctional metasurface to realize the focusing effect for LCP and
anomalous reflection for RCP, as schematically shown in Fig. 1(d).
Figure 5(a) illustrates the experimental setup of near-field mapping
measurement to clarify the first functionality of our metadevice, i.e.,
the 3D focusing effect. In these experiments, we shine an LCP beam

normally on the measurface by a horn antenna and adopt a monopole
antenna to scan the electric field distributions in xoz and yoz. Both the
monopole antenna and the horn antenna are connected to the vector
network analyzer. Figure 5(b) shows part of the fabricated sample
(198� 198mm2) and the desired phase distribution /L x; yð Þ for real-
izing the 3D focusing effect with a focal length of 100mm at 12GHz.
The simulated scattered jExj2 field distribution in both xoz and yoz
planes at 12GHz is depicted in Fig. 5(c), obtained through subtracting
the incident field from the total field, clearly verifying the 3D focusing
effect with the focal length in good agreement with theoretical predic-
tion. In our experiments, the monopole antenna is used to scan the
area of 180� 180mm2 with the center located at 100mm above the
metasurface. Figure 5(d) shows the measured Ex field pattern in
the xoz plane at seven representative frequencies within the broad fre-
quency band of 9–15GHz, which match well with the corresponding
FDTD simulations depicted in Fig. 5(e). Clearly, such a robust focus-
ing effect demonstrates the broadband characteristics of our device.
However, the reflection phases do not always keep parabolic shape
well outside the working band, leading to the deteriorated focusing
quality.

Figure 6 exhibits the second functionality, i.e., anomalous reflec-
tion, of the spin-unlocked metasurface under the illumination of the
RCP beam. According to the theoretical design, the reflection phase
distribution at 12GHz, including both the resonance phase and PB
phase described in Eq. (3), satisfies a linear distribution along the
x direction [see the bottom part of Fig. 6(a)], corresponding to the
anomalous reflection angle of 45� at 12GHz. Similar to previous

FIG. 5. Characterization of the focusing effect with the proposed spin-unlocked metasurface for the LCP beam. (a) Schematic of our experimental setup of the scattering near-
field scanning measurement. (b) Part of the fabricated spin-unlocked metasurface and the reflection phase distribution of meta-atoms for normal incidence of the LCP beam at
the designed frequency 12 GHz. (c) Simulated 3D reflected electric field intensity distribution of our device at 12 GHz. Here, the focal length is demonstrated as 100 mm.
Reflected field patterns in the xoz plane obtained via simulations (d) and measurements (e) at several frequencies.
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far-field measurements, we, respectively, use the LCP and RCP horn
antenna to receive the scattered far-field signal of the metasurface at
different reflection angles. The measured co-polarized and cross-
polarized angular distributions of scattered electric far-field intensities
(color map) vs frequency and reflection angle are shown in Figs. 6(b)
and 6(c), respectively. Obviously, the scattered field power is mainly
deflected to a specific angle, satisfying the expected value calculated in
Eq. (3) [see the solid line in Fig. 6(b)]. The inset in Fig. 6(b) depicts the
FDTD-simulated and experimentally measured scattered far-field dis-
tributions at 12GHz as example, showing good agreement with each
other. Based on the data from Figs. 6(b) and 6(c), we have also
retrieved the measured efficiencies of the anomalous reflection effect
for the spin-unlocked metasurface, remaining above 80% within
11–16.5GHz. With these meta-atoms at hand, we can achieve arbi-
trary spin-modulated bifunctional wavefronts with quite high effi-
ciency within the broad frequency band.

To summarize, a high-performance and broadband spin-
unlocked bifunctional metasurface working at microwave frequencies
is designed and demonstrated through combining the resonance phase
and PB geometric phase together. Compared to the literature,20,51–57

the proposed building block can provide the desired resonance phase
with the PCR always remained at almost 100% within a broad band
via single parameter tuning. The spin-delinked bifunctional wavefront
modulations, i.e., APSHE and focus effect/anomalous reflection, are
demonstrated by both simulations and experiments, exhibiting quite
high efficiencies within a wideband. This design strategy is quite

general that can be developed to THz and optical frequency regimes,
where the nano-fabrication and Ohmic absorption will become the
key challenges. Our findings pave up a promising direction to explore
the spin-modulated multifunctional meta-system for high-integration
and high-performance photonics applications.
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