
PHYSICAL REVIEW A 103, 033515 (2021)

Revisiting the anomalous spin-Hall effect of light near the Brewster angle
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Optical spin-Hall effect (SHE) exhibits many intriguing features as a linearly polarized (LP) light beam strikes
an interface at incident angles around the Brewster angle, but the underlying physics remains obscure. Here, we
elucidate the physics through reanalyzing this problem employing rigorous calculations and the Berry phase
concept. As a circularly polarized (CP) light beam strikes an optical interface, the reflected light beam contains
two components, a spin-flipped abnormal mode acquiring geometric phases (thus exhibiting a spin-Hall shift)
and a spin-maintained normal mode without such phases. Strengths of these two modes are determined by the
incident angle and the optical properties of the interface. Under the LP incidence, however, a spin component
inside the reflected light beam must be the sum of normal and abnormal components of reflected light beams
corresponding to CP incidences with different helicity, which thus sensitively depends on the incident angle.
In particular, at incident angles near the Brewster one, reflection coefficients for two CP components exhibit
opposite signs, leading to significant destructive interferences between normal and abnormal modes, finally
generating highly deformed reflected light patterns with anomalously enhanced spin-Hall shifts. These findings
can be extended to both reflected and transmitted cases with Brewster-like behaviors. Our analyses reinterpret
previously discovered effects, providing an alternative understanding on the SHE of light.

DOI: 10.1103/PhysRevA.103.033515

I. INTRODUCTION

Light reflection can vanish as a p-polarized light strikes
a dielectric interface at a particular incident angle, known as
the Brewster angle [1,2]. Such a property was widely used to
polarize the incident light. For light beams composed by plane
waves with different wave vectors, many intriguing effects
were discovered as such beams strike an optical interface
at the Brewster angle, such as cross polarization conversion
[3–5] and the generations of vectorial vortex beams [6,7]. Re-
cently, much attention was denoted to studying the spin-Hall
effect (SHE) of light [8–14] as a linearly polarized (LP) light
beam is reflected by an optical interface at incident angles
around the Brewster angle. Many unusual features of SHE
were discovered in such an optical process. For example,
the spin-Hall shifts of light beams are anomalously enhanced
as the incident angle approaches the Brewster angle, and
spin-polarized reflected light beams exhibit highly deformed
transverse patterns [15–25]. The SHE of light in many ma-
terials or interfaces with Brewster-like or pseudo-Brewster
angles has been widely studied [26–31] and utilized for pre-
cise metrology and sensing [32–36].
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Many theoretical efforts have been devoted to understand-
ing the nature of SHE of light at sharp interfaces, including the
cases at Brewster angles. In 2004, Onoda et al. [8] extended
the semiclassical theory of SHE of electrons to study the
optical SHE. Such a theory omits the wave nature of light,
which was soon refined by Bliokh et al. [9,10] in 2006 who
proposed a more accurate wave theory. The wave theory,
based on decompositions of light beams to LP plane waves,
can well reproduce the anomalous SHEs discovered for re-
flected beams at the Brewster angles [15–19]. However, the
underlying physics accounting for such unusual effects were
not clearly explained, but are rather simply attributed to the
enhanced spin-orbit interactions in such special cases. Later,
Ren et al. re-examined such a process [20] based on circu-
larly polarized (CP) bases, and pointed out that the spin-Hall
shifts discovered under LP incidence are weighted averages
of results obtained under CP incidences with different spins.
However, the underlying physics, such as why and how the
coherent superposition of two CP modes can lead to such un-
usual effects in such special cases, are still not well elucidated.

In this paper, we revisit this problem based on rigorous
calculations in CP bases and the Berry-phase concept. As a
CP light beam illuminates an optical interface, we find that
the reflected beam generally contains two parts, which are
normal and abnormal modes with spin (helicity) conserved
and reversed, respectively. Whereas the abnormal mode ex-
hibits a spin-dependent Pancharatnam-Berry phase which can
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generate a SHE, the normal mode does not acquire any such
additional phases. Meanwhile, the coefficients of these two
terms are determined by the Fresnel’s coefficients at this opti-
cal interface, which, in turn, sensitively depend on the incident
angle and the material properties. Therefore, a spin compo-
nent inside the reflected beam under an LP incidence is the
sum of normal and abnormal modes corresponding to CP inci-
dences with opposite spins, respectively. Interference between
these two modes generates fascinating properties discovered
in previous calculations in LP bases. In particular, at the
vicinities of Brewster-angle incidence, Fresnel’s coefficients
of two polarizations are opposite leading to destructive inter-
ferences between two modes, which significantly deforms the
field pattern and abnormally enlarge the spin-Hall shift of the
resultant beam. We finally extend our ideas to both reflection
and transmission cases with Brewster-like behaviors.

II. THEORY OF LIGHT BEAM REFLECTED
AT SHARP INTERFACES

The light beam reflected at an optical interface is a coherent
superposition of reflected plane waves inside the beam. We
define (x, y, z) and (xa, ya, za) as the laboratory and local
coordinate systems, respectively, where y and ya point to the
same direction and za is parallel to the propagation direction of
the beam [Fig. 1(a)]. Here, the superscripts a = {i, r} label the
incident and reflected light, respectively. Based on the angular
spectrum theory, we can expand the incident or reflected beam
as linear combinations of plane waves in the CP basis,

Ea(ra) =
∫

d2ka
⊥eika·ra

[ua
+(ka)v̂+(ka) + ua

−(ka)v̂−(ka)],

(1)

where ka · ra = ka
⊥ · ra

⊥ + ka
z za with ka

z =
√

(ka)2 − (ka
⊥)2 ,

ra
⊥ and ka

⊥ are the wave vector and position vector in
the local coordinate, v̂σ (ka) = [v̂p(ka) + iσ v̂s(k

a)]/
√

2 (σ ∈
{+,−}) denote the unit vectors of left (+) and right (−) CPs
with v̂s(k

a) = ẑ × ka/|ẑ × ka| and v̂p(ka) = v̂a
s × ka/ka be-

ing the unit polarization vectors of s-polarized and p-polarized
plane waves defined in the laboratory coordinate, and ua

±(k)
are the expansion coefficients. Directions of these beams θa

K
are dictated by the wave vectors Ka of the central plane waves

and directions of different plane waves are represented by ϑa
k

[Fig. 1(b)].
For the present reflection problem, we have(

ur
+(kr )

ur
−(kr )

)
= R(k||)

(
ui

+(ki )

ui
−(ki )

)

=
[

r++(k||) r+−(k||)
r−+(k||) r−−(k||)

](
ui

+(ki )

ui
−(ki )

)
(2)

to connect ur
±(kr ) and ui

±(ki ) with kr and ki intercon-
nected by Snell’s law. Here r++(k||) = r−−(k||) = [rp(k||) +
rs(k||)]/2 and r+−(k||) = r−+(k||) = [rp(k||) − rs(k||)]/2 are
Fresnel reflection coefficients of CP waves with tangential
wave vector k|| defined in the laboratory coordinate system,
where rp(k||) and rs(k||) are, respectively, Fresnel reflection
coefficients of p- and s-polarized plane waves within the
beam. At an interface between two isotropic dielectrics, these
coefficients are derived based on the amplitude ratio of re-
flected and incident electric fields [1], i.e.,

rp(k||) = k(2)
z n2

1 − k(1)
z n2

2

k(1)
z n2

2 + k(2)
z n2

1

, rs(k||) = k(1)
z − k(2)

z

k(1)
z + k(2)

z

, (3)

where k(1)
z = ki cos ϑ i

k , k(2)
z = kt cos ϑ t

k , n1,2 are refractive in-
dices of the two media on two sides of the interface, ϑ t

k =
sin−1[n1 sin ϑ i

k/n2], ki = n1k0, kt = n2k0, and k0 = 2π/λ is
the free-space wave number.

To benefit further calculations, we rewrite the E-field dis-
tributions of the light beams on reference planes defined with
za = const. as

Ea
⊥(ra

⊥, za) =
∫

d2ka
⊥eika·ra

[U a
+(ka)V̂+ + U a

−(ka)V̂−], (4)

where all wave components are assumed to take identi-
cal spin vectors of the central Ka vector and V̂σ (Ka) =
(x̂a + iσ ŷa)/

√
2. Here, U a

±(ka) are related to ua
±(ka) defined

in Eq. (1) via (
U a

+(ka)

U a
−(ka)

)
= P(a)

(
ua

+(ka)

ua
−(ka)

)
, (5)

where P(a)
σσ ′ = [V̂σ (Ka)]∗ · v̂σ ′ (ka) (σ, σ ′ ∈ {+,−}) are the el-

ements of P(a), representing a projection between spin vectors
of a plane wave with ka and the center one Ka. Combining

FIG. 1. Schematic of a spin-polarized light beam reflected at a single interface (say, air-glass interface). (a) The reflected beam consists of
a spin-reversal mode with a transverse spin-Hall shift �yabn and a spin-maintained mode without shifts. (b) Schematics of incident planes of
the central (Ki) and noncentral (ki) plane waves within the incident beam. Here |+〉 and |−〉 represent left- and right-handed CPs, respectively.
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Eqs. (2) and (5), we finally get[
U r

+(kr )

U r
−(kr )

]
= M(r)

[
U i

+(ki)

U i
−(ki)

]
, (6)

where M(r) = P(r) · R(k||) · (P(i) )−1 whose elements are

M++ = M∗
−− = [Ar (Bi )

∗
rp(k||) + (Ai )

∗
Brrs(k||)]/Ci

M+− = M∗
−+ = [ArBirp(k||) − AiBrrs(k||)]/Ci. (7)

Here, Aa = cos ϑa
k (cos φk cos θa

K−i sin φk ) + sin ϑa
k sin θa

K,
Ba = cos φk − i cos θa

K sin φk , and Ci = Ai(Bi)∗ + (Ai )∗Bi

with φk and ϑa
k defined in Fig. 1(b) (see Appendix A for a

detailed derivation). Note that Eq. (6) connects U r
±(kr ) with

U i
±(ki ), which dictates the transverse patterns in the k space

of the reflected and incident beams, respectively [see Eq. (4)].
Assume that the incident beam is a left-handed CP Gaus-

sian one with E-field distribution on its waist plane being

Ei
+(ri

⊥) = exp[−(ri
⊥/w0)2]V̂i

+, (8)

with w0 being the half width of the beam waist; we find

that U i
+(ki ) = w2

0
2 exp[−(ki

⊥w0)2
/4] and U i

−(ki ) ≡ 0. Putting
U i

±(ki ) into Eq. (6) to get U r
±(kr ), we finally get the reflected

E fields as

Er
++(rr

⊥) =
∫

d2kr
⊥eikr ·rr

M++U i
+(ki )

Er
−+(rr

⊥) =
∫

d2kr
⊥eikr ·rr

M−+U i
+(ki ). (9)

Here, the spin-maintained and spin-reversal beams are
referred to as normal and abnormal modes, respectively.
This means that even though the incident beam exhibits a
pure spin, the reflected beam can still contain a spin-reversal
abnormal component which comes from the “effective
anisotropy” possessed by the optical interface at oblique
incidence [i.e., r+− = (rp − rs)/2 	= 0]. When the incident
beam is a right-handed CP one, we can also obtain the normal
and abnormal modes in the reflection, i.e., Er

−−(rr
⊥) and

Er
−+(rr

⊥), akin to Eq. (9).
Finally, with the E-field distribution of the reflected beam

fully known, we can then use the following formula:

�y =
∫∫

yr |E|2dxrdyr∫∫ |E|2dxrdyr
, (10)

to calculate the spin-Hall shift of a light beam.

III. GEOMETRIC BERRY PHASE AND ANGULAR
MOMENTUM CONSERVATION

To further analyze the underlying physics, we re-examine
the matrices P(a) and M(r) under the paraxial-wave approx-
imation. Based on such an approximation, we have ϑa

k ≈
θa

K, cos φk ≈ 1, and sin φk ≈ φk ≈ ky/(k0 sin θ i
K ), and thus

Aa ≈ Ba ≈ 1−iφk cos θa
K ≈ exp(−iφk cos θa

K ). Therefore, the
matrix P(a) now reads (see Appendix B)

P(a) ≈
[

exp(i	a
+) 0

0 exp(i	a
−)

]
, (11)

where 	a
σ = −σ a cos θa

K · φk ≈ −σ aky cos θa
K/(k0 sin θ i

K )
(σ a ∈ {+,−}) is a ky-dependent geometric phase originated
from the projection operation between the polarization vector

of the central plane wave and the noncentral ones inside the
beam. Note that σz = σ a cos θa

K is the projection of the spin of
the beam in the laboratory z direction and φk is the rotation of
the azimuthal angle of the incident plane [Fig. 1(b)], and thus
	a

σ reflects the coupling between spin (σz) and local rotation
(φk) of the polarization vectors of each plane wave. Hence,
	a

σ can be seen as a spin-redirection Berry phase [12,13,37].
With the P(a) matrix known, we further simplify the M(r)

matrix defined in Eq. (6) as

M(r) ≈
[

r++(k||) r+−(k||) exp(i	abn
+ )

r−+(k||) exp(i	abn
− ) r−−(k||)

]
. (12)

Putting Eq. (12) into Eq. (9), we find that whereas
each normal-mode k component does not acquire any
additional phase upon reflection, each abnormal-mode k
component gains an additional phase 	abn

σ = 	r
σ−	i

−σ ≈
−2σ iky cot θ i

K/k0 after reflection. Such an additional phase
	abn

σ equals the difference between the spin-redirection Berry
phases possessed by the reflected and incident plane wave,
and can only be nonzero in such a spin-reversal process. It can
be regarded as a ky-dependent Pancharatnam-Berry geometric
phase, which originates from the spin reversal of the abnormal
mode [37–39]. This kind of Pancharatnam-Berry phase is
found to be intrinsic and gauge invariant [40]. Intriguingly,
while the Pancharatnam-Berry phase discovered in [41–43]
comes from anisotropic response of the materials, here the
geometric phase results from the “effective” anisotropy pos-
sessed by an isotropic interface seen at oblique incidence.
Based on Eqs. (9) and (12), we can easily prove that the
spin-Hall shift of the abnormal mode is

�yabn = −∇ky	
abn
σ = 2σ i cot θ i

K/k0, (13)

which dictates that the momentum-dependent geometric
phase gradient results in the real-space spin-Hall shift
[14,40,44]. This shift is independent of optical properties of
the interface.

Therefore, it is clear that only the spin-reversed abnor-
mal mode exhibits the SHE, dictated by the geometric phase
gained in the reflection process. The normal mode does not
have the SHE since it does not acquire such geometric phases
at all. Meanwhile, the strength of the abnormal mode, namely
the Fresnel reflection coefficient under the CP bases, is sensi-
tively dependent on the incident angle and optical properties
of the interface.

We now explain the spin-Hall shifts from the perspective
of angular momentum conservation [12,13,45]. Because of
the rotational symmetry of the interface with respect to the
z direction, the total angular momentum in this direction must
be conserved. The incident circular polarization beam only
has spin angular momentum (SAM) of averaged σ i cos θ i

K
per photon in the z direction, in unit of h̄. The z component
SAMs of the normal and abnormal modes are σ r

nor cos θ r
K and

σ r
abn cos θ r

K, respectively, where we have θ r
K = θ i

K, σ r
nor = σ i,

and σ r
abn = −σ i. Therefore, the change of the SAM in the

normal mode is �Lnor = 0, while that in the abnormal mode is
�Labn = σ r

abn cos θ r
K − σ i cos θ i

K = −2σ i cos θ i
K. This change

will be converted into additional orbital angular momentum
which results in the transverse spin-Hall shifts �ynor = 0 and
�yabn = −�Labn/Px = 2σ i cot θ i

K/k0, where Px = k0 sin θ i
K is

averaged linear momentum per photon in the x component.
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This result is in good agreement with Eq. (13) based on the
full-wave theory and Berry-phase analysis.

IV. RESULTS AND DISCUSSION

We now employ the formulas derived in the CP basis to
reanalyze the SHE of light under LP incidences [9–12,15–17].

Assume that the incident beam is a p-polarized one which
contains both equal-strength CP components with differ-
ent spins; we get U i

+(ki ) = U i
−(ki ). Put such an initial

condition into Eqs. (4) and (6); we find that the CP com-
ponents exhibiting different spins inside the reflected beam
are

Er
+(rr

⊥) =
∫

d2kr
⊥eikr ·rr

(M++ + M+−)U i
+(ki ) = Er

++(rr
⊥) + Er

+−(rr
⊥)

Er
−(rr

⊥) =
∫

d2kr
⊥eikr ·rr

(M−+ + M−−)U i
+(ki ) = Er

−+(rr
⊥) + Er

−−(rr
⊥). (14)

Obviously, Eq. (14) shows that both Er
+(rr

⊥) and Er
−(rr

⊥)
are composed of a normal mode and an abnormal mode cor-
responding to CP incidences with different spins, as shown in
Fig. 2(a). Figure 2(b) depicts how |Er

+(rr
⊥)|2 and |Er

−(rr
⊥)|2

(the field intensities of the left- and right-handed CP com-
ponents inside the reflected beam) vary against the incident
angle θ i

K. The intensity patterns of two CP components change
significantly as varying the incident angle, and have opposite

FIG. 2. Intensity distributions and spin-Hall shifts of beams
reflected from the air-glass interface near the Brewster an-
gle (∼56.31°) under the illumination of a p-polarized beam.
(a) Schematics of using the CP incidence results to reinterpret pre-
vious spin-Hall shifts under LP incidence. (b) Intensity distributions
and (c) spin-Hall shifts of the left- and right-handed CP components
of the reflected beam. The solid lines and dots separately represent
rigorous results calculated by Eq. (7) and approximated ones calcu-
lated by Eq. (12). The refractive index of glass is set as 1.5, the beam
waist w0 = 50λ, and the working wavelength λ = 633 nm.

intensity evolutions. On both sides of the Brewster angle
[θB = tan−1(n2/n1) ≈ 56.31◦ here], the intensity patterns ex-
hibit opposite spin-Hall shifts, which vanish exactly at the
Brewster angle [see Fig. 2(c)]. These results are consistent
with those discovered in previous literature [15–17].

To judge whether the approximation [Eq. (12)] can de-
scribe well the reflection behavior at the vicinities of the
Brewster angle, we calculate the spin-Hall shifts [see dots
in Fig. 2(c)] with Eq. (12) and then compare them with the
results obtained with the full theory [Eq. (7), solid lines in
Fig. 2(c)]. They agree well with each other, which means that
the Berry-phase approximation can grasp the physics of the
beam reflection near the Brewster angle.

Now we are in the position to discuss the underlying
mechanism of the unusual effects discussed above. Equa-
tion (14) already revealed that a CP component inside the
reflected beam is a sum of two components, implying that
their interference must play an important role. We take
Er

+(rr
⊥) as an example to analyze the underlying mechanism.

Figure 3(a) depicts how the computed spin-Hall shifts of the
normal and abnormal modes vary against the incident angle

FIG. 3. Reinterpretation of the spin-Hall shift in CP basis.
(a) Spin-Hall shifts of normal and abnormal modes of the reflected
beam under a CP beam illumination. Insets: intensity distribution of
the normal and abnormal modes. (b) Fresnel coefficients for the CP
plane waves.
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FIG. 4. Fresnel coefficients and spin-Hall shifts for two slabs placed in the free space. Left panel for an ε-near-zero slab with ε = 0.01 and
right panel for an εz-near-zero uniaxial slab with εx = εy = 1 and εz = 0.01. Here, the slab thickness is set as h = 1λ.

near the Brewster one. The spin-Hall shifts of the normal
mode are zero as expected, while those of the abnormal mode
are in the order of λ/5. Meanwhile, we need to check the
Fresnel coefficients (r++ and r+−) which determine the am-
plitudes of two modes [see Eq. (12)]. Under the paraxial-wave
approximation, we can use the Fresnel coefficients of the
central wave vector Ka to well approximate those of other
wave components inside the incident beam. Figure 3(b) depict
how the reflection coefficients r++ and r+− of the central
wave vary against the incident angle. We find that r++ and
r+− take opposite signs, and we have r+− = −r++ exactly at
the Brewster angle, caused by the vanishing of reflection of
the p-polarized incidence. Under such a condition, we find
that the normal and abnormal modes interfere with each other
destructively. Note that the two modes exhibit well-defined
field patterns and that of the abnormal mode exhibit a tiny
spin-Hall shift; we immediately expect that such destructive
interference may generate significantly distorted final inten-
sity pattern at the vicinities of the Brewster-angle incidence,
as shown in Fig. 2(b).

V. EXTENSIONS

From the above discussion, we know that the incident angle
and the optical properties of the interface are two main degrees
of freedom that control the amplitude and phase of the Fresnel
coefficients (r++,−− and r+−,−+). When the incident angle is
far away from the Brewster angle, we have r+−,−+  r++,−−
and the strength of the abnormal mode is much less than
that of the normal one, making the spin-Hall shift under LP
illumination very weak [15]. Therefore, if an interface can
produce a Brewster-like behavior (i.e., rp → 0), we can also
have r+− = −r++, and thus a giant SHE. For example, we
consider an optically thin slab placed in free space, whose
permittivity is near zero (ε = 0.01) and permeability is μ = 1.
Such ε-near-zero materials can be found in nature, such as
indium tin oxide in the infrared range [46]. This slab exhibits
Brewster-like behavior (rp = 0) for light at an incident angle

of ∼3.57◦ (see Appendix C), as shown in Fig. 4(a). In this
situation, we can also expect an unusually enhanced SHE
[Fig. 4(b)]. Similar Brewster-like behavior also can be found
in some structured interfaces such as multilayer films [26–28],
hyperbolic metamaterials [29,30], and a birefringent symmet-
rical metal cladding planar waveguide [31].

Our idea can be extended to the transmission cases. We
note that at the air-glass interface, the spin-Hall shift of
the transmitted beam under LP illumination is very small
(maximum ∼0.1λ) [11]. This is because the efficiency of
the abnormal mode of the transmitted beam is very low
(t+−,−+  t++,−−). When overlapping with the normal mode,
the final spin-Hall shift is very tiny. In fact, as long as the
Fresnel coefficient of a designed interface has a Brewster-like
behavior in the transmission (tp → 0), one can also greatly
enhance the spin-Hall shift of transmitted light under LP il-
lumination. For example, we consider a nonmagnetic (μ = 1)
εz-near-zero uniaxial slab with its optical axis being parallel
to the z direction, whose permittivities are εx = εy = 1 and
εz = 0.01. An εz-near-zero uniaxial slab could be realized by
artificial hyperbolic metamaterial [47]. The slab is transpar-
ent for s-polarized wave (|ts| ≡ 1, see Appendix C) because
of εx = εy = 1, and totally reflects the p-polarized wave as
the incident angle is larger than a critical angle (ϑc ≈ 5.7◦)
[Fig. 4(c)] satisfying the condition of εz = sin2ϑc. We get,
from Fig. 4(c), that the spin-Hall shift can be significantly
enhanced around ϑc [Fig. 4(d)].

VI. CONCLUSIONS

We have reconsidered the SHE of light beams reflected at a
sharp interface based on a full-wave theory. Under a CP beam
illumination, the reflected beam produces a spin-reversal ab-
normal mode with geometric Berry phase and weak SHE,
and a spin-maintained normal mode without geometric phase.
We reveal that the physical origin of the geometric phase is
the topological nature of the beam itself, and the efficiency
of SHE is determined by the incident angle and the optical
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properties of the interface. With the physical mechanism un-
covered, we further demonstrate that the spin-Hall shifts of
the reflected beam can be hundreds of times larger than that
of the refracted beam when a p-polarized beam is reflected
from a sharp interface, that is, it is the result of destructive
interference of the normal and abnormal modes under the CP
basis. The destructive interference leads to significant defor-
mation of light intensity patterns and abnormally enhanced
SHEs. This idea can also be extended to both reflection and
transmission cases with Brewster-like behaviors. Our research
clarifies the physics of the abnormally SHE near the Brewster
angle and provides an alternative perspective for understand-
ing the SHE of light.
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APPENDIX A: DERIVATION OF φk AND ϑa
k

The wave vectors of the central and an arbitrary plane wave
inside a beam are denoted by Ka and ka with a = i, r, t , re-

spectively [see Fig. 1(b)]. We define (x̂, ŷ, ẑ) as the laboratory
coordinate system, and (x̂a, ŷa, ẑa) as the local coordinate sys-
tem with ẑa||Ka. Obviously, these two systems are connected
by a rotation of angle θa

K with respect to the y axis. Therefore,
components of vector ka in different coordinate systems are
connected by

kx = ka
x cosθa

K + ka
z sinθa

K

ky = ka
y

kz = −ka
x sinθa

K + ka
z cosθa

K. (A1)

Ka and ka separately form angles of θa
K and

ϑa
k = sin−1(k||/ka), (A2)

where k|| = (k2
x + k2

y )1/2, with the laboratory z axis. The az-
imuthal angle of the incident planes of any noncentral plane
wave, with respect to that of the central plane wave, reads

φk = tan−1(ky/kx ). (A3)

APPENDIX B: DERIVATION OF MATRIX P(a)

Based on Eqs. (1) and (4), we get the following relation for
each ka component:

U a
+(ka)V̂+(Ka) + U a

−(ka)V̂−(Ka)

= ua
+(ka)v̂+(ka) + ua

−(ka)v̂−(ka). (B1)

Multiplying both sides of Eq. (B1) by [V̂+(Ka)]∗ and
[V̂−(Ka)]∗, respectively, and utilizing the orthonormal con-
ditions, [V̂σ (Ka)]∗ · V̂σ ′ (Ka) = δσσ ′ , we get

U a
+(ka) = ua

+(ka)[V̂+(Ka)]∗ · v̂+(ka) + ua
−(ka)[V̂+(Ka)]∗ · v̂−(ka)

U a
−(ka) = ua

+(ka)[V̂−(Ka)]∗ · v̂+(ka) + ua
−(ka)[V̂−(Ka)]∗ · v̂−(ka), (B2)

which can be simplified as the following matrix form:(
U a

+(ka)
U a

−(ka)

)
= P(a)

(
ua

+(ka)
ua

−(ka)

)
=

(
[V̂+(Ka)]

∗ · v̂+(ka) [V̂+(Ka)]
∗ · v̂−(ka)

[V̂−(Ka)]
∗ · v̂+(ka) [V̂−(Ka)]

∗ · v̂−(ka)

)(
ua

+(ka)

ua
−(ka)

)
. (B3)

Equation (B3) is just Eq. (5) in the main text.
According to Eq. (B3), we get the following explicit forms of P(a) matrix elements through straightforward calculations:

P(a)
++ = (P(a)

−−)∗ = (Aa + Ba)/2, P(a)
+− = (P(a)

−+)∗ = (Aa − Ba)/2. (B4)

With P(a) and R(k||) known, we can get the M(r,t ) matrices.

APPENDIX C: FRESNEL COEFFICIENTS OF AN
OPTICALLY THIN SLAB PLACED IN FREE SPACE

Consider a light beam incident on an optically thin
nonmagnetic slab (thickness h, permeability μ = 1, and per-
mittivity ε), placed in the free space. The Fresnel reflection
coefficients can be expressed as [1]

rp(k||) =
( k(2)

z

k(1)
z ε

− k(1)
z ε

k(2)
z

)
sin(k(2)

z h)

2i cos(k(2)
z h) + ( k(1)

z ε

k(2)
z

+ k(2)
z

k(1)
z ε

)
sin(k(2)

z h)
,

rs(k||) =
( k(1)

z

k(2)
z

− k(2)
z

k(1)
z

)
sin(k(2)

z h)

2i cos(k(2)
z h) + ( k(1)

z

k(2)
z

+ k(2)
z

k(1)
z

)
sin(k(2)

z h)
. (C1)

Here k(1)
z = ki cos ϑ i

k , k(2)
z = kt cos ϑ t

k are derived by
Eq. (A2).

We then consider a nonmagnetic uniaxial slab (μ = 1),
placed in the free space. Its permittivity tensor is

↔
ε =

⎛
⎝εx

εy

εz

⎞
⎠, (C2)

where εx = εy 	= εz. In this case the optical axis of the uniaxial
slab is parallel to the laboratory z axis, that is, the system
still has rotation invariance, and all the theories above are still
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applicable. The transmission coefficients are given by [48]

tp(k‖) = 1

cos(qeh) − i
2

( qe

εxq1
+ εxq1

qe

)
sin(qeh)

,

ts(k‖) = 1

cos(qoh) − i
2

( qo

q1
+ q1

qo

)
sin(qoh)

, (C3)

where q1 =k0 cos ϑ i
k , qo =√

εxk0 cos ϑo
k , qe = [εxk2

0 − εx
εz

k2
‖ ]1/2,

k‖ = k0 sin ϑ i
k , and ϑo

k = sin−1(sin ϑ i
k/

√
εx ). The subscripts o

and e respectively stand for ordinary and extraordinary. When
εx = εy = εz, Eq. (C3) returns to the isotropic case. Note that
the cross-polarization Fresnel coefficients between the p- and
s-polarized waves are zero, because the optical axis lies in the
z direction.
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