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Abstract

Quantum fluctuations are expected to lead to highly entangled spin-liquid states in some
two-dimensional spin-1/2 compounds. We have synthesized and measured thermodynamic
properties and muon relaxation rates in two related such compounds, one of which is the
least disordered of this kind synthesized hitherto and reveals intrinsic properties of a class
of spin-liquids. Its measured properties can all be simply characterized by scale invariant
time-dependent fluctuations with a single parameter. The specific heat divided by tem-
perature and muon relaxation rates are both temperature independent at low temperatures,
followed by a logarithmic decrease with increasing temperature. Even more remarkably,
∼57% of the magnetic entropy is missing down to temperatures of O(10−3) the exchange
energy, independent of magnetic field up to gµBH > kBT . This is evidence that quantum
fluctuations lead either to a gigantic specific heat peak from topological singlet excitations
below such temperatures, or to an extensively degenerate topological singlet ground state.
These results reveal an ultra-quantum state of matter.

The study of quantum fluctuations in interacting matter is of primary interest in physics,

encompassing fields as diverse as the thermodynamics of black holes[1, 2], particle physics

beyond the standard model[3], the theory of quantum computation[4], and various phenomena
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in condensed matter physics. The latter is often paradigmatic, since it allows access and con-

trol to a wide variety of experiments, and the concepts often cut across different fields. These

range from quantum Hall effects[5] to the quantum criticality that governs high temperature

superconductivity[6, 7] to the spin liquid states[8, 9], all of which have been intensively studied

in the last three decades. Spin liquids, in particular, have been hard to characterize beyond the

fact that quantum fluctuations prevent any conventional order in them. Despite extensive exper-

iments, few precise conclusions about the nature of the ground state and low-lying excitations

are available, because the results are almost always dominated by cooperative effects, however

interesting, of the impurities[8, 9, 10, 11].

We have synthesized the S = 1/2 triangular lattice compounds Lu3Cu2Sb3O14 (LCSO)

and Lu3CuZnSb3O14 (LCZSO), and measured their thermodynamic properties and muon spin

relaxation (µSR) rates λ(T ) down to 16 mK. In LCSO magnetic impurities are estimated to

be less than a part in 103 and other impurities or defects about a part in 102. There are no

signatures in either compound of conventional or spin-glass order, or any other cooperative

effects of impurities down to the lowest temperature. However, a 5% concentration of Schottky

defects (Cu/Zn site interchange) in LCZSO is shown to change properties from nearly defect-

free LCSO very significantly. We believe the high purity of LCSO allows us to unearth the

extraordinary intrinsic properties of a class of spin-liquids.

For T � the Weiss temperature ΘW ∼ 20 K, the deduced specific heat CM = γT from

magnetic excitations and λ(T ) are constants [λ(T→0) is related to γ−1], followed by loga-

rithmic decreases with increasing temperature. These results are shown to be consistent with

scale-invariant magnetic fluctuations. An even more surprising result is that the measured mag-

netic entropy in LCSO, obtained from the specific heat from 100 mK to its saturation at high

temperatures, is only about 36% of the total entropy kB ln 2 per spin-1/2. µSR measurements

effectively extend these results down to 16 mK. The missing entropy does not change in a mag-
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netic field up to 9 T at any temperature up to ΘW. The implications of these results, discussed

later, shed a completely new light on the nature of the ground and excited states of a nearly

defect-free spin liquid.

We have also synthesized the isostructural nonmagnetic compound Lu3Zn2Sb3O14 (LZSO).

LCSO, LCZSO, and LZSO are variations on the R3Zn2Sb3O14 series of compounds (R = rare

earth)[12], with R = Lu and Zn completely (LCSO) or half (LCZSO) substituted by Cu. So far

only powder samples have been synthesized by solid-state reaction methods. All the physical

properties shown below have been reconfirmed on independently grown samples.

The crystal structure, lattice dimensions, and x-ray diffraction (XRD) pattern exhibiting

narrow Bragg peaks are shown in Supplementary Information (SI) Sec. I for LCSO. The com-

pounds form alternate parallel kagomé planes of Lu and Sb (SI Figs. S1b and S1d). In all three

compounds, Cu2+ and/or Zn2+ ions sit in the slightly distorted hexagons of the Lu3+ and Sb5+

kagomé layers. The two layers in LCSO have Cu ions in distinct co-ordinations: tetrahedra of

Sb (Cu1) and octahedra of Lu (Cu2). In SI Sec. III we show the results of dc and ac suscepti-

bility measurements down to 0.1 K, estimate the magnetic impurity concentrations, and show

evidence of no cooperative effects.

LCSO is extraordinarily defect-free, with less than 10−3 “orphan” spins and negligible

Schottky defects. Static magnetism, ordered or disordered, would be expected from orphan

spins, but µSR experiments rule this out down to ∼16 mK. LCZSO has alternate planes with

primarily Cu in the Lu layers and Zn in the Sb layers. We have not been able to make it with less

than 5% substitutional defects, most likely site interchange of Cu and Zn. These are observed

in XRD data and give rise to a low-temperature Schottky contribution to the specific heat; they

also affect other properties significantly.

In SI Sec. II we discuss the symmetry of the orbitals where the spins reside, which we argue

suggests the two-dimensional nature of magnetic interactions in both compounds. Although

3



the details of the microscopic Hamiltonian are not known, the fact that the magnetic suscep-

tibility, the specific heat and the muon relaxation rate in LCSO can all be separated into two

distinct components, each characterized by the same two parameters, implies that the exchange

interactions in the two layers interact dominantly only with other ions in the same layer. The

slight distortions from equilateral of the triangles will lead to slight variations in the exchange

interactions in the spatial directions.

Figure 1a shows the measured zero-field specific heat C(T ) in LCSO and LCZSO from

60 mK to about 300 K, as well as that of the isostructural nonmagnetic compound LZSO;

the latter allows a very accurate subtraction of the lattice contribution Clatt. A weak bump in

C(T ) at about 1 K and an increase below 0.2 K can be seen in both compounds. The low-

temperature increase is the expected nuclear Schottky contribution (from quadrupolar splitting

in zero applied field) ∝ T−2, which can be isolated from the bump because the latter is neg-

ligible compared to the former at low temperatures. We have carefully investigated the bump.

The variation of both the low-temperature increase and the bump with magnetic field are de-

scribed in SI Sec. IV, where we show that the bump is a Schottky anomaly due to non-magnetic

impurities[13] with an excited magnetic state. All of our conclusions are affected by less than

0.5% whether or not we subtract the Schottky contribution.

The magnetic contribution CM(T,H)/T is deduced from CM/T ≡ [C − (Clatt + Cnuc +

Cimp)]/T , where Cnuc and Cimp are the nuclear and impurity Schottky contributions, respec-

tively. CM(T,H)/T at various fields is shown in Fig. 1b for LCSO and in SI Fig. S7b for

LCZSO. For H = 0 CM(T )/T is constant at low temperatures, below about 0.4 K for LCSO

and below about 1 K for LCZSO (SI Fig. S7b). There is an approximately logarithmic de-

crease with increasing temperature at higher temperatures in both compounds. This and other

features are examined in detail in SI Sec. VI, where the logarithmic behavior is shown to be

characterized by parameters close to the respective Weiss temperatures.
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The results of our specific heat and µSR measurements are central to the conclusions of this

work. In low-temperature specific-heat measurements, especially in insulators, one must ensure

that thermal equilibrium is reached in the measurements. The steps we have taken to achieve

equilibrium and the evidence for it are described below in the Methods section.

We turn next to the measurable magnetic entropy. Fig. 2a shows the normalized magnetic

entropy [S(T,H)− S(0.1K,H)]/R ln 2 calculated by integrating CM/T from 0.1 K to T . For

H = 0 it is ∼ 0.36kB ln 2 per spin-1/2 in LCSO at T = 20 K. The uncertainty in these numbers

is less than 2%. From the proportionality of the µSR relaxation rate to CM/T from 16 mK to 4

K (Fig. 3), we infer that the constant CM/T also continues to at least 16 mK.

The lattice specific heat becomes very large for T > 20K (Fig. 1A), and it is not possible

experimentally to obtain the magnetic contribution directly at any higher temperature. In SI

Sec. V, we calculate the entropy at T ≈ ΘW from the high-temperature series expansion for a

triangular lattice, and find it be about 0.07kB ln 2 for LCSO. We therefore conclude that either

about 57% of the magnetic entropy (1 - 0.36 - 0.07) resides in the ground state in LCSO or,

more likely, the average CM/T below ∼ 16 mK is about 103 times the measured constant value

above ∼100 mK.

At low temperatures the expected decrease ∆SM(T,H) = SM(T,H) − SM(T, 0) of the

entropy with H is observed (Fig. 2a). At temperatures above about 20 K its apparent satu-

ration to a smaller value with field cannot be ascertained accurately by the above subtraction

procedure, where as noted above the specific heat is dominated by the lattice contribution. We

determine the entropy in a magnetic field by an alternate more accurate method, which also

gives an estimate of the accuracy of the subtraction procedure below 20 K.

In the alternate method, the magnetization M(H,T ) is measured from 4 K to 300 K at

various fields (SI Figs. S4a and S4c). (∂M/∂T )H for both LCSO and LCZSO are given in SI

Figs. 4b and 4d. We then use the Maxwell relation (∂S/∂H)T = (∂M/∂T )H , and integrate
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(∂S/∂H)T to give the change in entropy due to the magnetic field as a function of temperature.

The results are displayed as red points in Fig. 2b, where the results from the direct determination

by subtraction shown in Fig. 2a are shown as black points. To get a measure of the consistency

of results obtained by these quite different methods, we note that the standard deviation of the

red and black points in LCSO is 0.02.

The results in Fig. 2b show that the available entropy loss due to magnetic fields at low

temperatures is systematically recovered asymptotically at higher temperatures to its zero-field

value. However, the missing entropy is field independent up to 9 T over the whole temperature

range. From this behavior at gµBH ≤ kBT it follows that the missing entropy is due to purely

singlet excitations. Since it is unaffected even for gµBH � kBT for kBT larger than the (small)

ΘW, local mutually non-interacting singlet states are also ruled out because their population

would be replaced by the doublet states favored by magnetic polarization. We have checked

by measuring in a field while both warming and cooling and in cooling in a field and then

measuring that the behavior is unchanged; there is no hysteresis. So the phenomena appears not

to be due to metastable singlet states.

µSR is a direct probe of low-energy spin dynamics. We have carried out zero-field (ZF)

and longitudinal-field (LF) µSR measurements from 16 mK to about 20 K in both LCSO and

LCZSO, the details of which are discussed in SI Sec. VII. Neither long-range order nor spin

freezing were detected down to the lowest temperatures. The ZF dynamic muon spin relaxation

rate λZF for LCSO is plotted as a function of temperature in Fig. 3. It is essentially constant be-

low about 0.5 K, indicating persistent spin dynamics and a high density of magnetic fluctuations

at low temperatures[14, 15]. Also shown is the deduced CM/T , the temperature dependence of

which closely follows that of λ. A temperature-independent relaxation rate as T → 0 is itself

extraordinary. The measured specific heat and its relation to the µSR relaxation rate suggest a

scale-invariant spectral function for magnetic excitations, as discussed below and in SI Sec. X.
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We show in the inset in Fig. 3 that the measured CM(T )/T in LCSO can be separated

into two parts for the two layers. The low-temperature constant values for the two layers are

approximately inversely proportional to their respective values of ΘW, and they both decrease

logarithmically approximately as ln(ΘW1/T ) and ln(ΘW2/T ). The integrated value, i.e. the

entropy, is approximately the same for the two layers. These forms only pertain for the ‘quantum

region’ below the respective ΘW’s. The knee region between the two logarithms requires fit to

the semiclassical region T & ΘW2. Details are given in SI Sec. VI.

A similar decomposition for LCZSO is given in SI Sec. VIII. Even with only 5% Schottky

defects, which are site interchanges of Cu and Zn in the two layers, the ratio of the entropies of

the two layers is no smaller than 30%. This emphasizes how important it is to have defect-free

compounds to study spin liquids.

Theoretical results for spin liquids and their relation to our experimental findings are sum-

marized in SI Sec. IX. We have not found theoretical results on any relevant model which

correspond to the properties discovered here[9, 8].

Both the specific heat and the µSR relaxation rate λ(T ) follow from the scale-invariant den-

sity of states functionAM(ω, T ) = γMf(ω/T ) for magnetic fluctuations proposed in SI Sec. X.

Not only is the temperature dependence of λ(T ) given by this form, but its order of magni-

tude is obtained from the same coefficient γM that reproduces the magnitude of the measured

CM/T . As a function of imaginary time periodic in inverse temperature, AM(ω, T ) is equiv-

alent to an algebraic decay ∝ 1/τ . A ground-state entropy, which should more accurately be

called a temperature-independent entropy, requires a more singular form A0(ω, T ), which cor-

responds to a correlation function of the singlets approximately proportional to 1/ log(τ). This

is as quantum as one can get. Some conceptual questions related to this are briefly discussed

in SI Sec. X. This form is chosen in the belief that the missing entropy is due to a dynamical

effect. The form can be modified easily by introducing a new scale if instead there are equally
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unexpected colossal ultra-low energy excitations.

In summary, two related phenomena have been discovered in the nearly defect-free com-

pound LCSO.

(1) Quantitatively related constant CM/T and µSR relaxation rates λ(T ) are observed below

a temperature related to the Weiss temperature ΘW, followed by the same logarithmic cutoff in

both measurements. The excitations necessary for these are shown to be scale invariant. They

carry finite spin quantum numbers because their entropy for gµBH . kBT is systematically

reduced due to H; this leads to constant muon relaxation. They exhaust the measurable exci-

tations at all temperatures up to 9 tesla. All measured properties can be related to just the one

parameter in the scaling function.

(2) Conclusive evidence is found for missing entropy from a colossal density of singlet

excitations below an ultra-low energy scale compared to the Weiss temperature. Very interesting

is also the fact that the ultra-low energy excitations are not removed by a magnetic field as high

as 9 Tesla, showing that they are not trivial local singlets but quite probably non-local and

topological.

In a close look at the literature (a summary is given in SI Sec. XI), we find that such proper-

ties have not been previously observed in any spin-liquid candidates. We think this is because

LCSO can be prepared with fewer defects than any other spin liquid investigated so far, so that

the intrinsic behavior of a class of spin liquids is revealed. The simplicity and the nature of

the singularities in Eqs. (S9)–(S11), with which we can parameterise all the data, invite impor-

tant new theoretical developments. The magnetic fluctuations suggested by AM(ω, T ) should

be accessible via neutron scattering. The detection of the scalar excitations A0(ω, T ) poses an

interesting challenge to experimental techniques. Having no charge or magnetic moment, they

are a form of dark matter not observable by the usual spectroscopic techniques.
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Methods

0.1 Sample growth and characterization.

We have synthesized the compound Lu3Cu2Sb3O14 (LCSO) by the solid state reaction method.

Stoichiometric amounts of Lu2O3, CuO and Sb2O3 were thoroughly mixed using an agate mor-

tar, and heated to 1030◦C for 60 hours with intermediate regrinding and reheating. So far

only powder samples could be synthesized. The crystal structure was determined from pow-

der X-ray diffraction (XRD) data taken at room temperature using a Bruker D8 advance XRD

spectrometer (λ = 1.5418 Å). Rietveld refinement of the X-ray data was made using the GSAS

program[16].

LCSO belongs to the rhombohedral pyrochlore family[12, 17], in which kagomé lattices are

formed by alternating layers of filled-shell (S = 0) Sb5+ and Lu3+ ions. The spin-1/2 Cu2+

ions sit at the centers of the kagomé hexagons (Cu1-Sb and Cu2-Lu). To determine whether

the observed properties are specific to the 2D layers, we have also synthesized the related com-

pound Lu3CuZnSb3O14 (LCZSO), in which nonmagnetic layers, where S = 0 Zn ions replace

Cu1 and alternate with Cu2 layers. We have been unable to synthesize this compound with less

than ∼ 5% site-interchange disorder, despite efforts with different growth protocols.

0.2 Magnetic susceptibility measurements.

DC magnetic susceptibility measurements above 2 K were made using a Magnetic Property

Measurement System (MPMS, Quantum Design). The AC magnetic susceptibility was mea-

sured over the temperature range 0.1 K–4 K in a Physical Property Measurement System

(PPMS, Quantum Design) equipped with AC susceptibility and dilution refrigerator options.

The AC susceptibility measurements covered the frequency range from 631 Hz to 10000 Hz.
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0.3 Specific heat measurements.

Specific heats were measured by the adiabatic relaxation method, using a PPMS equipped with a

dilution refrigerator. Data were taken at temperatures between 50 mK and 300 K for LCSO and

LCZSO, and 0.2 K–300 K for the isostructural nonmagnetic compound Lu3Zn2Sb3O14 (LZSO).

We took special care to ensure that thermal equilibrium was achieved for the low-temperature

measurements. As an example, at base temperature (∼50 mK), the measurement took 70 min-

utes. The specified PPMS thermal coupling factor between the sample and sample platform was

95% at 100 mK and 99% for temperatures above 0.6 K. Measurements were made during cool-

ing down to base temperature as well as warming up. Similarly, when measuring the specific

heat in a magnetic field, the sample was field-cooled and then measured on warming, and also

zero-field cooled, field applied at low temperatures, and then measured during warming. The

results were always consistent.

0.4 Muon spin relaxation experiments.

The time-differential µSR technique[18] was used, in which the evolution of the ensemble

muon-spin polarization after implantation into the sample is monitored via measurements of the

decay positron count-rate asymmetry A(t). µSR experiments were performed down to 16 mK

using the DR spectrometer on the M15 beam line at TRIUMF, Vancouver, Canada, and the

Dolly spectrometer at the Paul Scherrer Institute, Villigen, Switzerland. Samples were attached

to a silver cold-finger sample holder in the DR spectrometer, to ensure good thermal contact

with the mixing chamber. Appropriate functional forms of A(t) were fit to the asymmetry data

using the MUSRFIT µSR analysis program[19].
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Data availability

All data needed to evaluate the conclusions in the paper are present in the main text or the

supplementary information.
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a b

Fig. 1. Specific heat of LCSO, LCZSO, and LZSO. a, Measured specific heats in zero

field. b, Intrinsic magnetic contribution CM(T,H)/T to the specific heat divided by tempera-

ture at various magnetic fields for LCSO, after subtraction of the lattice, nuclear-Schottky, and

impurity-Schottky contributions (See text and SI Sec. IV).
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a b

Fig. 2. Entropy of LCSO. a, Change SM(T,H) − SM(0.1 K, H) in magnetic entropy,

normalized to R ln 2 per spin, 0.1 K ≤ T ≤ 23 K, 0 ≤ H ≤ 9 T. b, Red symbols:

change ∆SM(T,H) = SM(T,H)− SM(T, 0) in magnetic entropy in an applied field of 9 Tesla

as a function of temperature from 2 K to 300 K from measurements of magnetization in LCSO

(see text and SI Sec. IV). Black symbols: the same quantity up to 20 K from the direct deter-

mination of magnetic entropy shown in Panel a. The lost magnetic entropy is fully recovered at

high temperatures, proving that the missing entropy is independent of the applied field.
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Fig. 3. Muon spin relaxation rate and specific heat in LCSO. A. Temperature dependencies

of zero-field muon spin relaxation rate λ(T ) (red dots: data taken at PSI; red squares: data taken

at TRIUMF) and CM(T )/T (blue dots) at zero field. It is remarkable that the relaxation rate

tends to a constant value at low temperatures, and that it follows the temperature dependence

of CM/T over the entire temperature range. Inset: separation of CM/T into contributions from

the two layers (SI Sec. VI). The low-temperature constant values are approximately inversely

as their respective ΘW’s as determined by the fit to the magnetic susceptibility measurements

(SI Sec. VI). The characteristic temperatures of the two logarithmic terms are also similar to

the respective ΘW values. The knee between the two logarithms, for T & ΘW2 requires a
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semiclassical form, which we fit to the expression mandated for T >> ΘW. With this fit, the

measured magnetic entropy is consistent with being the same for both layers.
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Supplementary Information: Discovery of an ultra-quantum spin liquid

16



1 Sample characterization

Figure S1 shows the XRD powder pattern for LCSO, together with details of the crystal struc-

ture.

Cu2

Cu1

Fig. S1. Rietveld refinement of XRD data for LCSO. a, Powder XRD pattern. Red points,

black line, and blue line: experimental data, calculated patterns, and residuals, respectively.

Black bars: Bragg reflections. ), Unit cell. c, Inequivalent Cu1 and Cu2 environments. d, In-

equivalent triangular lattices formed by the spin-1/2 Cu2+ ions in the ab plane.

Table S1 lists the fitted values of the structure parameters. In LCSO, inequivalent Cu1 and

Cu2 sites form two sets of triangular lattices surrounded by Sb and Lu atoms, respectively.

According to the XRD refinement results, Cu1 ions are displaced from the center 3b sites (0,

0, 0.5) and located at 18g sites (x, 0, 0.5) with a partial site occupation of 1/6. Such a slight

distortion of the Cu1 position (the refined value of x is 0.0505) is consistent with previous

work [12, 17].

In LCZSO,∼5% Cu2 sites on the Cu-Lu layer are occupied by Zn ions, and∼5% Zn sites on

Zn-Sb layer are occupied by Cu1 ions. We show below that a ∼5% impurity level is consistent

with the analysis of the impurity Schottky specific heat.
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2 Coordination of Cu2+ ions and the symmetry of the or-
bitals

From the detailed structure analysis and the Rietveld refinement, one finds that the Cu2+ in the

Lu layers are tetrahedrally coordinated and those in the Sb layers are octahedrally coordinated

by the O2− ions (see structure in Fig. S1B–D). The tetrahedra do not appear to be distorted, but

the octahedral axis perpendicular to the Cu layers is elongated.
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Table SI. Rietveld XRD fitting results.

Lu3Cu2Sb3O14

a = b = 7.322 Å; c = 16.963 Å
α = β = 90

◦; γ = 120◦

Space Group: R-3m

Atom Wyckoff positions x y z Occ.
Sb 9d 0.5 0 0.5 1

Cu1 18g 0.0505(4) 0 0.5 0.1667
Cu2 3a 0 0 0 1

Cu2 (disorder) 9e 0.5 0 0 0
Lu 9e 0.5 0 0 1

Lu (disorder) 3a 0 0 0 0
O1 6c 0 0 0.3922(7) 1
O2 18h 0.4838(2) -0.4838(2) 0.1308(4) 1
O3 18h 0.0299(5) -0.0299(5) -0.0274(1) 1

Lu3CuZnSb3O14

a = b = 7.324 Å; c = 16.929 Å
α = β = 90

◦; γ = 120◦

Space Group: R-3m

Atom Wyckoff positions x y z Occ.
Sb 9d 0.5 0 0.5 1

Cu1 18g 0.0320(1) 0 0.5 0.0083
Zn1 18g 0.0401(4) 0 0.5 0.1584
Cu2 3a 0 0 0 0.95
Zn2 3a 0 0 0 0.05
Lu 9e 0.5 0 0 1

Lu (disorder) 3a 0 0 0 0
O1 6c 0 0 0.5359(4) 1
O2 18h 0.5016(1) -0.5016(1) 0.1231(8) 1
O3 18h 0.3087(2) -0.3087(2) -0.3267(1) 1
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In an ideal tetrahedral crystal field, the xy, yz and zx orbitals are higher in energy and

degenerate. Their linear combinations form bonds with the oxygen. The Cu2+ d holes then sit

in these linear combinations. In an ideal octahedral crystal field, the levels are reversed and

the higher energy states are the degenerate dx2−y2 and d3z2−r2 orbitals. Due to the elongation

of the octahedra, there is a further splitting so that d3z2−r2 is the half occupied highest orbital.

Moreover, in LCSO the Cu ions in the Sb layers sit in the center of the triangles formed by the

Cu in the Lu layers, each of which has orbitals with four-fold phase variation. The exchange

integral between the Cu2+ ions in different layers would then be zero.

This suggests that in LCSO, where the intralayer distance between Cu sites is shorter than

the interlayer distance, the interaction between layers is weak. Therefore LCSO has similar

properties per Cu ion as LCZSO, where Cu ions only occupy the Lu layer. We expect that

both are two-dimensional as far as the magnetic interactions between the spin-1/2 Cu2+ ions

are concerned. These arguments are only suggestive, however, and more evidence, e.g, from

measurements of crystal-field levels in single crystals, would be required to substantiate them

as well as to learn about effects on the levels due to other small distortions of the octahedra.

3 Magnetic susceptibility measurements

Fig. S2A shows the measured inverse DC susceptibility from 2 K upwards for both LCSO and

LCZSO. The former exhibits a low-field Weiss temperature ΘW of 4.4K and µeff = 1.85 µB,

consistent with a weakly-perturbed free Cu2+ ion. In Sec. 6 below we show that in LCSO the

susceptibility is best fit by two Curie-Weiss laws of equal amplitude, with µeff ≈ 1.85µB and

Weiss temperatures 4.37 K and 26.9 K. We also tried to estimate the impurity density by adding

a Curie law (ΘW ≈ 0, appropriate to nearly-free impurity spins) and readjusting the Weiss

temperatures. Equally good fits are found with an impurity concentration of O(5× 10−3).

Much stronger estimates of impurity concentrations are obtained from the real part χ′ac of the

AC susceptibility measured over the temperature range 0.1 K–3 K, shown in Figs. S2B and S2C.

By ascribing all the temperature dependence of χ′ac in this temperature range to a Curie law, we

find accurate upper limits to the concentrations of free-spin magnetic impurities to be less than

about 10−3 in LCSO and about twice that value in LCZSO. No frequency dependence is found
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up to 10 kHz (only the lowest frequency results are reported in Figs. S2B and S2C). Thus no spin

freezing behavior is observed down to 0.1 K. The region where no transition of any kind (includ-

ing

a b

c

Fig. S2. Magnetic susceptibility. a, Temperature dependence of inverse DC magnetic sus-

ceptibility 1/χdc of LCSO and LCZSO. Inset: χdc of LCSO, 2 K ≤ T ≤ 4 K. A small dia-

magnetic contribution χ0 has been subtracted from the data for LCZSO. b and c, Temperature

dependencies of the real part χ′ac of the AC susceptibility in LCSO and LCZSO, respectively,

0.1 K ≤ T ≤ 3.5 K. Similar temperature dependencies were found for frequencies up to

10 kHz. χ′ac, as distinct from χdc, is not given in absolute units.

a spin-glass transition) could be evidenced from χ′ac is extended down to 16 mK by muon spin

relaxation experiments, shown below in Fig. S6.

4 Determination of the magnetic specific heat

The lattice contribution to the specific heat of LCSO and LCZSO can be obtained very accu-

rately from measurement of the specific heat of the nonmagnetic isostructural compound LZSO

(main article, Fig. 1A). After subtracting the lattice contribution, the specific heat in both LCSO

and LCZSO exhibits a weak bump at about 1 K and an increase below about 0.2 K.
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The low-temperature rise is due to the nuclear Schottky contribution Cnuc(T,H), which

varies as

Cnuc(T,H) = A(H)T−2 (S1)

for temperatures high compared to the nuclear spin splitting (quadrupolar in zero and low fields).

By fitting Eq. (S1) to the rise at the lowest temperatures (where contributions from the lattice

and the bump are negligible), the coefficient A(H) could be determined. The nuclear Schottky

contributions at various fields and the field dependence of A(H) are shown in Fig. S3A.

a b

c d

Fig. S3. Nuclear and impurity Schottky specific heats. a, Nuclear contribution to specific

heat Cnuc = A(H)/T 2 at different magnetic fields. Curves: fits of Eq. (S1) to the data. Inset:

fitting parameter A for both LCZSO and LCSO. b, Impurity Schottky contribution Cimp to

specific heat at different applied magnetic fields for LCSO. Curves: fits of Eq. (S2) to the data.

c, Field dependencies of the parameters n and ∆ for LCZSO and LCSO from the fits of Panel
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B. d, Specific heat contributions divided by temperature in LCSO at zero magnetic field. Red:

measured total. Black: lattice contribution. Green: nuclear Schottky contribution. Yellow:

impurity Schottky contribution. Blue: intrinsic magnetic contribution CM/T .

The weak bump is hypothesized to be a Schottky contribution due to impurities with non-

magnetic ground states. If so, the integrated entropy under the bump should remain constant

as the magnetic field is varied, even though the bump may move linearly to higher temperature

with increasing field due to excited magnetic states. This hypothesis was tested by using the

well-known contribution due to Schottky defects with a concentration n of impurities:

Cimp(T ) = nR

(
∆

T

)2
g0

g1

exp(∆/T )

[1 + (g0/g1) exp(∆/T )]2
, (S2)

where R is the molar gas constant, ∆ is the energy level splitting, and g0 and g1 are the degen-

eracies of the lower and upper levels. Equation (S2) provides a very good fit to the zero-field

bump for LCSO with g0/g1 set to 1, ∆0 = 1 K, and n = 0.014±0.002. The area under the bump

is field-independent (Fig. S3B) 1. As shown in Fig. S3C, as H is varied n remains constant and

∆ increases linearly with H: ∆ = ∆0 + gµBH , where µB is the Bohr magneton and the Landé

g factor is found to be 1.3.

In LCZSO, the value of n = 0.049 ± 0.02, which is the same value given for impurities

in LCZSO by the Rietveld refinement of the structure (SI Sec. 1). This consistency is strong

evidence for the hypothesis of an impurity Schottky contribution. For LCSO n is too small to

be determined from the XRD powder pattern.

The intrinsic magnetic contribution CM(T ) to the specific heat is then obtained by sub-

tracting the nuclear contribution Cnuc(T ) and the nonmagnetic impurity Schottky contribution

Cimp(T ) as determined above from the difference of the total specific heat and the lattice con-

tribution. The various contributions at H = 0 are separately shown in Fig. S3D. CM(T,H) for

LCSO at various fields is shown in the main article, Fig. 1B, and for LCZSO in Fig. S7B below.

A further test of the consistency of the procedure is to determine the variation of entropy

S(T,H) through the measurement of magnetization M(H,T ) at various H and T . We use the

1Note that
∫
C(T ) d(lnT ) =

∫
(C/T ) dT
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Maxwell relation (
∂S

∂H

)
T

=

(
∂M

∂T

)
H

, (S3)

and compare S(T,H) obtained by this method with that determined directly from CM(T,H).

M(H,T ) and (∂M/∂T )H are shown in Fig. S4, and the deduced changes in entropy for µ0H =

9 T are shown in Fig. 2B of the main article. The agreement also provides a quantitative measure

of the consistency between the results of these quite different techniques, cf. Figs. 2B and S7D.

As discussed in the main article, S(T,H) from the magnetization serves to determine the slow

approach at high temperatures of the measured entropy at finite H to its value at H = 0.
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a b

c d

Fig. S4. Magnetization and entropy. a, Measured magnetization from 2 K to 300 K for

various magnetic fields for LCSO. b, (∂M/∂T )H for LCSO at a few selected temperatures as a

function of magnetic field. c and d, As above, for LCZSO. These results are used to obtain the

change in entropy with field at various temperatures as shown in the main article, Fig. 2B.

5 High temperature series for a triangular lattice

Above about 20 K, which is close to the higher of the two Weiss temperatures ΘW in the

two layers of LCSO (Sec. 6 below), the lattice heat capacity becomes larger than 10 J mol−1

T−1 and any magnetic contribution to the specific heat less than a few percent of that value

becomes hard to extract. To get a more accurate value of the missing entropy, we use the high-

temperature series expansion to estimate the deviation from the asymptotic value kB ln 2 per

spin due to semiclassical fluctuations. High-temperature series expansions to 12th order for
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the susceptibility and energy are available for the Heisenberg model on a triangular lattice [20].

One finds ΘW = (3/2)J (the coefficient of the Heisenberg interaction) from the leading deviation

from the Curie law. The entropy from the leading two terms of the expansion of energy in (J/T ),

which is adequate to a percent at T = ΘW, is

S(T ) = kB

[
ln 2− 1

8

(
ΘW

T

)2

+
1

36

(
ΘW

T

)3

+ · · ·

]
.

The deviation from kB ln 2 at T = ΘW is 14% of kB ln 2. We should therefore expect that in

LCSO, the high temperature un-extracted entropy due to the one layer with ΘW ≈ 20K is about

7% of kB ln 2 per Cu. From Fig. 2A of the main text, the entropy at about 20 K is 0.36 kB ln 2,

to which this is added to get the value of the missing entropy to be about 57% of kB ln 2.

6 Two weakly-interacting Cu sublattices in LCSO

Inequivalent Cu1 and Cu2 sites in LCSO form two triangular sublattices coordinated by Sb

atoms and Lu atoms, respectively. Here we present evidence that these two sublattices make

additive contributions to the specific heat and the susceptibility.

CM/T is constant below about 0.6 K in LCSO (main article Fig. 1B) and a similar temper-

ature in LCZSO (see below). A fit of two components to the data for LCSO is shown in the

insert to Fig. 3, where each component is constant at low temperatures followed by a logarithmic

decrease at higher temperatures [Eqs. (S5) and (S6)].

Quantitatively, for LCSO

CM/T = C1/T + C2/T , (S4)

where

C1/T ≈
{

0.09 , T < 7 K ,
0.096 ln(20/T ) , T > 8 K ,

(S5)

and

C2/T ≈


0.46 , T < 0.4 K ,

0.2 ln(4.2/T ) , 0.5 K < T < 3 K ,
0.2/T 3, T > 3 K ,

(S6)

in units J K2 mol-Cu−1.

In the fitting of the specific heat in Fig. 3 and Fig. S7, a knee is observed between the two

approximately logarithmic decrease regions. We fit this with the contribution mandatory in the
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‘semiclassical’ regime T � ΘW , where CM/T = α(1/T )(ΘW/T )2 and α is a constant that

depends on the lattice and number of nearest neighbors.

As shown in Fig. S5A, in LCSO the temperature dependence of the DC magnetic suscepti-

bility χdc can be fit by a sum of two Curie-Weiss terms with equal weights:

χ = χ1 + χ2

=
NAµ

2
eff

3kB(T −ΘW,1)
+

NAµ
2
eff

3kB(T −ΘW,2)
(LCSO) , (S7)

with a common value of µeff = 1.85µB and two Weiss temperatures ΘW,1 = −26.9(3) K and

ΘW,2 = −4.37(1) K.

a b

Fig. S5. Two components in susceptibility of LCSO and LCZSO. a, DC magnetic suscepti-

bility χdc of LCSO measured at µ0H = 0.5 T (black circles). Curves: two Curie-Weiss depen-

dencies, with the same effective moment and different Weiss temperatures ΘW,1 = −26.9(3) K,

ΘW,2 = −4.37(1) K. Inset: inverse 1/χdc vs T , showing downward curvature at low tempera-

tures. b, DC magnetic susceptibility χdc of LCZSO measured at µ0H = 0.5 T (black circles).

As in LCSO, two Cu sublattices contribute to the susceptibility of LCZSO, but only ∼5% of

total susceptibility is from the Cu1 sublattice.

The inset shows the downward curvature of 1/χdc vs. T that is the signature of a second contri-
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bution with a smaller value of ΘW. We note that the characteristic temperatures in the logarithms

in the specific heat [Eqs. (S5 and (S6] are close to these Weiss temperatures or characteristic

exchange energies, and that the ratio of the constant specific heats at low temperature [Eqs. (S5)

and (S6)] is approximately the inverse ratio of their respective ΘW values.

For LCZSO (Fig. S5B), while χdc can also be fit by a sum of two Curie-Weiss terms, the

majority contribution comes from the Cu2 sublattice:

χ = χ1 + χ2

= 0.05
NAµ

2
eff

3kB(T −ΘW,1)
+ 0.95

NAµ
2
eff

3kB(T −ΘW,2)
(LCZSO) , (S8)

with a common value of µeff = 1.73µB and two Weiss temperatures ΘW,1 = −15 K and

ΘW,2 = −4.0(1) K. This is consistent with the observation from XRD that ∼5% of Zn sites on

Zn-Sb layers are occupied by Cu1 ions (SI Sec. 1). The near equality of ΘW,2 values for the two

compounds is evidence that in Eqs. (S7) and (S8) χ1 and χ2 are the contributions of the Cu1

and Cu2 layers, respectively.

7 Muon spin relaxation

Zero-field (ZF) and longitudinal-field (LF) µSR experiments were performed over the temper-

ature range 16 mK–20 K. Positive muons implanted in the sample are highly sensitive to the

local magnetic fields, with a resolution about 0.1 mT [21].

Representative ZF-µSR asymmetry spectra are shown in Fig. S6 for both LCSO and LCZSO.

Fig. S6. Zero- and Longitudinal-field µSR data. Temperature and field dependencies of µSR

asymmetry spectra. a, LCSO. b, LCZSO. Curves: fits discussed in the text. A constant signal

from muons that miss the sample and stop in the sample holder has been subtracted from the

data.

No long-range order or spin freezing is observed. This is evidenced by the lack of any sponta-

neous coherent oscillation or initial asymmetry loss in the ZF spectra [22, 23]. Static spin-glass

behavior is also excluded due to the absence of a 1/3 recovery tail of the muon depolarization

due to the random distribution of the static fields [24].
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The ZF spectra are best described by the functional form

A(t) = A0 exp(−λZFt)G
KT
ZF (σ, t) , (S7)

where A0 is the initial count-rate asymmetry, which is found to be temperature independent,

and

GKT
ZF (σ, t) =

1

3
+

2

3
(1− σ2t2) exp

(
−1

2
σ2t2

)
(S8)

is the ZF Kubo-Toyabe (KT) function, expected [25] from a Gaussian distribution of randomly-

oriented static or quasistatic nuclear dipolar fields at muon sites. In Eqs. (S7) and (S8) σ/γµ

is the the rms width of this distribution, γµ = 2π × 135.53 MHz/T is the muon gyromagnetic

ratio, and λZF is the rate of exponential damping due to dynamic fluctuations of the local Cu+2

spins. σ is found to be temperature independent at low temperatures, with σ = 0.146 µs−1 for

LCSO and σ = 0.081 µs−1 for LCZSO, typical values of the nuclear dipolar field distribution

from the host. With decreasing temperature λ gradually increases, saturates below 1K, and

remains essentially constant down to the lowest measured temperature of 16 mK for both LCSO

(Fig. 3) and LCZSO (Fig. S7A). A phenomenological stretched-exponential function A(t) =

A0 exp−(λt)β has also been fit to the ZF data. The fits (not shown) are good but with somewhat

larger statistical χ2 values. The temperature dependence of λ is similar to that from fits of

Eq. (S7), with temperature-independent β ≈ 1.2.

By applying a longitudinal magnetic fieldHL (i.e., along the initial muon spin polarization),

GKT
ZF (σ, t) in Eq. (S7) changes to the LF KT form GKT

LF (HL, σ, t) [25]. Figure S6 also shows
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asymmetry spectra for representative values of HL. When the applied fields are small, the field

dependence is dominated by decoupling of the static relaxation. The decoupling is complete

at high fields, and the µSR asymmetry spectra show a single exponential decay. This is evi-

dence that the observed relaxation arises from dynamic spin fluctuations, which persist down to

16 mK. Although the dynamic relaxation becomes slower with increasing magnetic field, it is

not completely suppressed even at 2.5 T.

8 Specific heat, Entropy and Muon spin relaxation in LCZSO

The µSR relaxation rate λ(T ), specific heat, magnetization, and entropy for LCZSO, shown in

Fig. S7A, exhibit the same general behavior as in the purer LCSO (Figs. 1–3 of the main text).

In both compounds CM(T )/T is nearly constant at low temperatures. In LCZSO the fall-off of

λ(T ) occurs at a higher temperature compared to that of CM/T whereas in LCSO they occur

at about the same temperature (main text Fig. 3). The crossover from constant CM/T to the

high-temperature decrease is smoother than in LCSO.

The inset in Fig. S7A shows the partitioning of the specific heat of LCZSO into contributions

from the two layers. The ratio of the entropies of the two layers is close to 3:1, although in the

ideal case, i.e., without Cu and Zn site interchange, there would be no magnetic entropy in the

Fig. S7. Data for LCZSO. a, Temperature dependencies of the magnetic specific heat divided

by temperature CM/T and the zero-field µSR relaxation rate λZF(T ). Inset: partition of two

components of the specific heat for the two layers in LCZSO deduced in the same way as

for LCSO (main text Fig. 3). b, CM/T at the specified magnetic fields. c, Magnetic entropy

obtained by integrating CM/T . d, Black points: change ∆SM in entropy in a magnetic field

by direct measurement of the specific heat. Red points: from magnetization measurements as

described in the text.

Zn layer. The substitution determined by x-ray diffraction and susceptibility measurements is

5% (Sec. 1), but the effect on the entropy is much larger.
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a b

c d

9 Theories on relevant spin-liquid models. Ground state en-
tropies.

Detailed numerical calculations [26] on the S = 1/2 Heisenberg model on a triangular lat-

tice give an ordered three-sublattice state, with reduction of the order parameter by zero-point

fluctuations of about 36% for the nearest-neighbor interaction model. We do not know how the

slight distortion of the triangular lattice in these compounds might affect the numerical results

for the nearest neighbor Heisenberg model. Numerical calculations on models with substantial

next-nearest-neighbor interactions on a triangular lattice [27] have given a quantum-disordered

state with gapless excitations conjectured to be spinons, but no ground-state entropy or indica-

tions of a gigantic peak in exponentially low energy singlet excitations. Spinons have a Fermi

surface and therefore a linear-in-T specific heat, but the magnetic fluctuations associated with

the Fermi surface lead to a relaxation rate proportional to the density of thermal excitations. It

is therefore proportional to T at low temperatures, similar to the Korringa rate in metals and
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unlike the constant rate found here.

Calculations on models for ice [28] or spin ice [29] [which agree with experiments [30, 31]],

and glass or spin-glass models, possess ground state entropy, but they are obviously inapplica-

ble here. Very careful calculations [32] and analysis of a high-temperature series expansion up

to 17th order for S = 1/2 Heisenberg spins on a kagomé lattice have found a missing entropy of

about 1/2 the total value down to temperatures of O(J/10), the lowest to which the calculations

are reliable. The most studied kagomé compound, herbertsmithite [10], has been found exper-

imentally to have scale-invariant magnetic excitations and a specific heat closely related to the

form suggested below, but the compound suffers from substantial disorder. No determination of

magnetic entropy is available for herbertsmithite, because its nonmagnetic counterpart has not

been found.

The only quantum-mechanical models known definitively to give ground-state entropy are

models of impurity spins in a metal with parameters tuned to give singularities at T → 0: the

2-channel Kondo model [33, 34, 35], the two-interacting Kondo-impurity model [36, 37, 38],

and mixed-valence impurity models [39, 40]. All these models are supersymmetric at criticality,

and have Majorana excitations proportional to the density of dilute noninteracting impurities.

Holographic field theory models [41, 42, 43] do have ground state entropy as well as observable

specific heat with various power laws including linear. (0+1)-dimensional disordered effective-

impurity models such as the SYK model [44, 45] also have extensive ground-state entropy as

well as gapless fermion excitations giving a linear-in-T specific heat. The mapping of the SYK

model to AdS theory of black holes has also been discussed [45]. Black holes are conjectured

to be quantum-mechanical and their physics is fashioned parallel to the thermodynamic laws

[46]. They are believed to have an observable linear-in-T entropy [1, 47].

10 Specific heat, ground-state entropy, and the muon relax-
ation rate

The properties reported here can be used to specify some features of the frequency-dependent

correlation functions that a fundamental theory might provide. Let us consider only the pure

limit and the experimental results for H = 0. We show that the measured specific heat and
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the muon relaxation rate follow if there are magnetic fluctuations with local density of states of

a specific scale-invariant form, AM(ω, T ). The ground state entropy requires a more singular

form A0(ω, T ).

We write

Aloc(ω, T ) ≡
∑
q

A(q, ω, T )δ(ω − ωq) = A0(ω, T ) +AM(ω, T ) , (S10)

where

A0(ω, T ) = S0
ω

ω2 + T 2
e−ω/T and (S11)

AM(ω, T ) = γM
ω

T
, for

ω

T
� 1 ,

= γM ln

(
ω

T + Tx

)
, for T � ω . Tx . (S12)

Here q specifies the quantum numbers of the fluctuations, which are different for the two contri-

butions. AM(ω, T ), as shown below, provides the measured specific heat CM/T ≈ (γMkB) for

T � Tx, and the µSR relaxation rate, which requires magnetic field fluctuations. A0(ω, T ), the

local density of states of singlet excitations, can easily be modified if later experiments reveal

a gigantic peak in CM/T at very low temperatures. S0 and γMT with a cutoff Tx of order the

Weiss temperatures, are related through the sum rule that the total entropy is kB ln 2 per spin

at high temperatures. The fluctuations are assumed to obey Bose-Einstein statistics with zero

chemical potential. Were it to turn out that they are hard core bosons or neutral fermions, obvi-

ous modifications in the hypotheses above would be required. The possibility that the spectrum

represents unfamiliar particles with unfamiliar statistics should also be entertained.

The functional form of AM(ω, T ) is derived at criticality in all the impurity models men-

tioned above, the 2D dissipative quantum xy model [48, 49, 50] and the SYK impurity model

[44, 45]. In every case, the low energy excitations in these toy models are topological and so

are the T → 0 states.

The free energy F is given by

F = −kT ln TrZ , TrZ =
∑
λ

e−βEλ , (S13)
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where λ contains the quantum numbers q as well as their occupation number. Summing over

the occupation numbers gives, as usual,

ln TrZ =
∑
q

ln

(
1

2 sinh(βωq/2)

)
. (S14)

Let us first calculate the entropy due toA0(ω, T ). One finds the entropy from the free energy

[S = −(∂F/∂T )V ]:

S = kB
d

dT
T

∫
dωA0(ω, T ) ln

(
1

2 sinh(βω/2)

)
, (S15)

= kBS0

(∫ ∞
0

dx x
e−x

1 + x2
f(x)

)
, f(x) = ln(

1

2
csc(x/2)) . (S16)

The value of the integral is approximately 0.275.

We briefly comment on the use of the Bose-Einstein distribution with zero chemical poten-

tial. The reason this works is that even with zero chemical potential, as can be easily calculated,

the number of excitations remains independent of temperature with the choice of the singu-

lar density of states of excitations. The divergent damping of the excitations implied by the

density of states also obviates a Bose-Einstein condensation. The colossal degenerate fluctuat-

ing singlet state is however likely to be unstable to other states by perturbations, for example

superconductivity on promoting itinerant charge states by doping.

The local density of states function AM(ω, T ) gives a free energy proportional to T 2 with

logarithmic corrections at high temperatures, an entropy of the deduced form, and a measurable

specific heat

CM(T )/T ≈ γMkB. (S17)

at low temperatures, with a logarithmic cutoff for temperatures above Tx. From the measured

value of CM(T )/T ≈ 0.5 J/K2 mole at low temperatures, γM ≈ 3 × 10−11 s. It is noteworthy

that its inverse is close to the measured Weiss temperature.

In zero magnetic field, the muon relaxation rate due to magnetic field (dipolar) fluctuations

at the muon site given by

λ(T ) = γ2
µ lim
ω→0

T

ω

∑
q

|Bloc(q)|2Imχ(q, ω) . (S18)
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where Imχ(q, ω) is the spectrum of magnetic fluctuations, which summed over q is identified

as AM(ω, T ). This is often written as

λ(T ) = γ2
µ〈B2

loc〉τM(T ) , (S19)

where 〈B2
loc〉 is the mean-square fluctuation of the local magnetic fields at muon sites and τM(T )

is the characteristic correlation time of the local field fluctuations [25]. For AM(ω, T ) given by

Eq. (S12), the temperature dependence of λ(T ) is seen to be the same as that of CM/T , as in the

experimental results shown in Fig. 3 of the main article. Since A(q, ω) is the absorptive part of

the magnetic fluctuation spectra, it follows that at low temperatures τM ≈ γM. Quantitatively,

from the measured λ(T ) and the deduced γM, we can deduce 〈B2
loc〉 using Eq. (S19). The

measured λ ≈ 0.1 µs−1 and τM ≈ γM ≈ 3 × 10−11 s, which gives a local rms fluctuating

field 〈B2
loc〉1/2 of about 0.1 T. This is roughly the field from ∼1-µB moments at a distance

of about 4 Å, which is what is to be expected for S = 1/2 Cu2+ dipolar fields at a typical

muon location. Thus the same fluctuations that contribute to the specific heat account semi-

quantitatively for the muon relaxation rate.

11 Comparison of properties of LCSO with other putative
spin-liquid compounds

Notable experimental discoveries of compounds that do not order (or do not order down to very

low temperatures compared to their ΘW’s) and have been discussed as spin-liquids in the last

25 years. We argue that our results are distinctive, most likely because LCSO is purer than any

other compound of this class, so that intrinsic properties of a class of spin-liquids are revealed.

Only a representative reference for each compound is given. More complete references may be

found in the review [51].

1. Herbertsmithite [52] is a S = 1/2 kagomé lattice compound, and has properties closest

of any in the literature to those discovered here. C/T and the µSR rate are constant at low

temperatures, but no nonmagnetic analog has been made to subtract the lattice specific heat to

see if there is an unobservable entropy due to ultra-low energy excitations. It is interesting that

single crystals have been made on which neutron scattering reveals a momentum independent
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continuum extending down to 0.25 meV, with ω/T scaling proposed here and much earlier in

the physics of the cuprates. NMR and µSR results are similar to those in our compound, except

at very low temperatures where evidence for inhomogeneity is found. The compound cannot

be made with less than ∼5% Zn and Cu site disorder, leading to a Schottky specific heat. This

resembles disordered LCZSO rather than ordered LCSO.

2. Some organic Cu compounds, κ-(ET)2Cu2(CN)3 [53], EtMe3Sb[Pd(dmit)2]2 [54, 55]

have a linear-in-T contribution to the heat capacity at low temperatures that unlike our results

is field independent. Unlike in our samples, it is followed at higher temperatures by a large

bump. We have not located any report in the literature of missing entropy or constant NMR

rates at low temperatures. In earlier samples a linear-in-T thermal conductivity was observed,

but in more recent samples this is not found. The problems and different results in differently

prepared samples have been documented in review articles, e.g. [51].

3. Cs2CuCl4 [56], ZnCu3(OH)6Cl2 [57], and BaCo2(P1−xVx)2O8 [58] all show ordering

of one or the other kind at low temperatures and have Curie contributions to the susceptibility

shown by the authors to be due to several percent orphan spins.

4. YbMgGaO4 [59, 60] exhibits a weakly divergent specific heat divided by temperature

(C/T ∝ T−0.3) with <0.6% residual spin entropy. But a low-temperature Curie tail is observed

in the susceptibility, indicative of impurities that are not taken into account in the specific heat

analysis. The µSR relaxation rate is constant below ∼0.1 K, and does not track C/T .

5. Ba3CuSb2O9 [61] has a nominally triangular S=1/2 lattice. Entropy saturation to only

about 1/3 of R ln 2 was observed using measurements on a non-magnetic analog to subtract the

lattice contribution. But the sample has 5% orphan spins, and a huge peak in the observable

specific heat at about 6 K. CM/T is field independent to 9 Tesla even between 0.2 K and 1

K well below µBH/kB. All this is quite different from the properties of our nearly orphan-

spin-free triangular lattice LCSO. Indications are that in Ba3CuSb2O9 there is a collective

state with glassy ordering at about 6 K, probably induced by non-local effects due to the large

concentration of orphan spins.

6. NiGa2S4 [62] and LCSO have very different properties. Spin freezing is observed in

NMR experiments in the former below about 10 K. Relaxation rates have various power laws

unrelated to the constant shown in LCSO.
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7. TbInO3 [63] exhibits two distinct Tb ion sites due to a ferroelectric distortion. One forms

a triangular lattice. No ordering is seen down to 0.15 K, but other properties do not resemble

those in LCSO.
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