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Abstract—A method of triple-mode operation by capacitive slot 

loading is proposed for bandwidth enhancement of single-fed 
circularly polarized (CP) patch antennas. Instead of using 
even-numbered linearly polarized (LP) modes with quadrature 
phase, three orthogonal LP modes are used to CP bandwidth 
enhancement, where the middle mode is shared by two 
cross-polarized modes with the same polarization. The advantages 
include reduced constraints, lower complexity and higher degree 
of freedom for antenna design. Guided by the method, a U-slot 
antenna and an E-shaped antenna are proposed and designed 
with characteristic mode analysis (CMA). Both antennas work 
with a TM10-like mode and a TM01-like mode. Differently, the 
U-slot antenna works with an additional slot mode and the 
E-shaped antenna works with an additional TM11-like mode. The 
operating modes are manipulated by the slot loadings for creating 
phase difference. As a result, wideband CP radiation is achieved 
with single feeding. CMA-based empirical formulas are derived 
for fast design. The proposed method and antennas are 
experimentally validated. Both antennas measure a bandwidth 
exceeding 21% for 10-dB return loss and 3-dB axial-ratio (AR), a 
significant improvement compared with conventional 
corner-truncated U-slot patch antennas of similar thickness or 
volume. 

Index Terms—Axial-ratio (AR), characteristic mode analysis 
(CMA), circularly polarized (CP), E-shaped antenna, triple-mode 
resonance, U-slot antenna, wideband. 

I. INTRODUCTION 
IRCULARLY polarized (CP) antennas are demanded in 
wireless systems for reduced multi-path interferences and 

flexible orientations between transmitting and receiving 
antennas [1]–[2]. Microstrip patch antenna is an attractive 
candidate due to its low profile, low cost and ease of fabrication 
[3]–[5]. However, due to the inherently narrow bandwidth of 
microstrip antennas, it is challenging to design single-fed and 
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wideband CP microstrip patch antenna without increasing the 
antenna volume significantly [6]–[8]. 

Wideband CP microstrip patch antennas can be achieved 
with multi-fed or single-fed techniques [1]. Comparing with the 
multi-fed technique which needs additional complex feeding 
network [9], [10], single-fed antennas are attractive for their 
simplicity in phased array applications. Normally, for 
single-fed CP microstrip antennas, the axial-ratio (AR) 
bandwidth can be enhanced by lowering the Q-factor of two 
orthogonal linearly polarized (LP) modes by using thick 
substrates of low-permittivity [11]–[14]. Furthermore, 
approaches of U-slot patch [15]–[21], E-shaped patch [22]–[25], 
and L-probe [26]–[29] are also effectively for improving the 
impedance matching. However, most of the aforementioned 
approaches are less effective for AR bandwidth enhancement 
than for impedance bandwidth. CP bandwidth is still limited. 
For example, the maximum CP bandwidth reported in reference 
[27] is only 11.8%, which is still not satisfied, but the thickness 
of the patch antenna has been increased to 0.221λ0. In short, this 
method tends to increase the antenna volume significantly. 

Alternatively, multiple pairs of orthogonal modes can be 
leveraged for improving the AR bandwidth by parasitic 
loadings, such as stacked layers and coplanar parasitic elements 
[30]–[34]. However, when it comes to multi-mode CP radiation, 
the loading method usually lacks of clear design guideline to 
address the phase difference between excited modes to form 
multi-mode CP radiation. In theory, a CP mode can be 
decomposed into two LP modes of quadrature phase difference. 
Straightforwardly, two CP modes need four LP modes. As a 
result, multiple CP modes lead to typically an even number of 
LP modes. This stresses certain symmetries for the patch 
geometry hence limiting the design freedom. Also, the mode 
theory of multi-mode CP antennas becomes more complicated. 
5% of CP bandwidth has been realized by creative use of triple 
modes in [35], where the use of a higher-order TM3/2,0 mode 
may hinder further bandwidth improvement of CP antennas of 
low sidelobes. The adopted method is by loading metallic vias, 
corresponding to inductive loading of patch antennas. 

Characteristic mode analysis (CMA) has recently regained 
its applications in the analysis and design of antennas, though 
proposed in early 1960s [36]–[38]. The revealed physical 
understanding helps with the improvement of antenna 
performances in multiple contexts, such as bandwidth 
enhancement [39]–[42], gain enhancement [43], radiation 
pattern synthesis [44], [45], guiding the excitation position [46] 
and designing metasurface antennas [47]–[52]. The 
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aforementioned applications of CMA are mostly focused on LP 
antennas due to the real nature of characteristic modes and the 
complex nature of CP modes, where the important inter-mode 
phase difference for CP radiation is less addressed [53]–[56]. 

In this paper, a method of triple-mode operation by 
capacitive loading is proposed for enhancing the CP bandwidth 
of single-fed microstrip patch antennas. Instead of using an 
even number of LP modes for multiple CP modes, an odd 
number of LP modes are leveraged by capacitive slot loading of 
microstrip patch antennas. CMA is utilized for revealing the 
operating mechanisms of the multi-mode CP antennas. With a 
single-fed, single-layer, and single-element structure, three 
orthogonal modes are simultaneously excited for improved CP 
bandwidth. For proof of concept, two popular slotted patch 
antennas are analyzed in detail, i.e., the U-slot and E-shaped 
patch antennas. 

The paper is organized as follows. Section II briefly reviews 
the characteristic modes theory and illustrates the proposed 
triple-mode resonance design method. In Section III and 
Section IV, the U-slot and E-shaped wideband CP patch 
antennas are investigated, respectively. The CMA results, 
parametric study, empirical design formulas and design 
progress are presented in detail. Section Ⅴ presents the 
experimental results and discussion, followed by conclusions in 
Section Ⅵ. 

II. DESIGN METHOD 
The characteristic mode theory is briefly reviewed and used 

for analyzing the working principle of the proposed antennas, 
and expound the proposed triple-mode design method. 

A. Characteristic Mode Theory 
The total currents J on the perfect electric conductor (PEC) 

can be expressed as a linear superposition of the characteristic 
currents, defined as 

1
,

N

n n
n

c
=

= ∑J J  (1) 

where Jn is the characteristic current of mode n. cn is the 
complex modal weighting coefficient of the n-th order mode 
[36]–[38]. 

Two parameters are important for CP antenna design, 
namely the modal significance (MS) and the characteristic 
angle (CA), both as a function of the eigenvalue (λn), defined as 

MS 1 1 ,n njλ= +  (2) 

( )1CA tan .n nπ λ−= −  (3) 

MSn represents the potential contribution of a particular 
mode to the total radiation when a source or excitation is 
applied. CAn physically characterizes the phase angle between 
a characteristic current and the corresponding characteristic far 
field. A mode is at resonance with MS equal to one or with CAn 
close to π [36]–[38]. For CP radiation, at least two modes 
should be excited simultaneously with equal MS and 90-degree 
CA difference. 

B. Concept: Triple-mode Wideband CP Operation 
Fig. 1 shows the proposed key concept of triple-mode 

operation for wideband CP radiation. With three modes, 
90-degree CA difference is desired for both the mode pair (1 
and 2) and pair (2 and 3), where each pair of modes is 
orthogonally-polarized. Mode 2 of resonant frequency f2 is a 
wideband mode shared by two relatively narrow-band modes, 
including the mode 1 resonant at f1 and mode 3 resonant at f3. J1 
and J3 are of the same polarization but in opposite phase, which 
is further perpendicular to the polarization of J2. As a result, 
two CP modes are formed by (J1+J2) at a lower band and (J2+J3) 
at a higher band, respectively. From the characteristic angle 
curve, the phase of mode 1 lags behind that of mode 2, and the 
phase of mode 2 lags behind that of mode 3. Therefore, the two 
CP modes are of the same sense, leading to improved CP 
bandwidth. The concept is verified by two examples, a U-slot 
antenna and an E-shaped antenna. The operating modes of the 
former include a slot mode, a TM10-like mode and a TM01-like 

 
Fig. 1.  Concept of triple-mode operation for wideband circular polarization. 
Mode 2 is wideband for being shared by modes 1 and 3. Modes 1 and 3 are of 
the same polarization but in opposite phase, and two resultant CP modes are of 
the same sense. 

 
Fig. 2.  Geometry of the proposed U-slot CP patch antenna. Dimensions are  
 wg = lg = 60, ws = ls = 25.2, wp = lp = 13.2, h = 6.3, a = 2.2, b = 9.4, c = 7.7, d = 
2.6, u = 0.8, xf = –1.6, yf = 2.3 (Unit: millimeter). 
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mode; whereas a TM10-like mode, a TM01-like mode and a 
TM11-like mode for the latter. 

III. WIDEBAND U-SLOT CP PATCH ANTENNA 

A. CMA of U-slot Structure 
Fig. 2 shows the configuration of the U-slot CP antenna. The 

antenna is composed of a top metallic patch (wp × lp), a 
dielectric substrate of Rogers AD250C (ws × ls, εr = 2.5, tanδ = 
0.0013 and thickness of 6.3 mm) and a ground plane (wg × lg). 
Other structural parameters of the antenna are listed in the 
caption of Fig. 2. An asymmetric U-slot is cut on the top 

metallic patch, which introduces a new slot mode for CP 
operation and helps with the impedance matching. The probe 
feed position is offset from the y-axis. 

Fig. 3 shows the CMA results of the first five modes for the 
U-slot structure, where the substrate and ground plane layers 
are infinite extended in the z-plane. As can be seen, two mode 
pairs (1 and 2) and (2 and 3) are formed, each pair with an 
intrinsically 90-degree phase difference and similar MS. Mode 
1 is the slot mode resonant at approximately 4.7 GHz. For the 
first and second mode pairs, the 90-degree phase difference 
occurs at approximately 5.0 GHz and 5.7 GHz, respectively. In 
addition, as can be seen from Fig. 3(b), the phase of mode 1 lags 
behind mode 2, whereas that of mode 3 leads mode 2. The two 
pairs of modes can be excited for improving CP bandwidth 
according to the proposed concept. 

Fig. 4 shows the associated modal currents and E-fields of 
the three modes at 5.0 GHz or 5.7 GHz where CA difference is 
equal to 90 degrees. As can be seen, the modal currents, electric 
fields, and modal radiation patterns of the same mode at 
different frequencies are similar. J1 and J3 are mainly vertically 
directed whereas J2 is mainly horizontally directed. Fig. 4(f)–(h) 
show that the nulls of E-field approximately extend along the 
y-axis for Mode 2 but along the x-axis for mode 3. The 
asymmetric U-slot disturbs the original electric field 
distribution and results in the offset of the nulls of the E-field 
from the central lines. The results are similar to those of the 
TM10 and TM01 modes of conventional square patch antennas. 
Therefore, the Modes 1–3 are named as the slot mode, the 
TM10-like mode and the TM01-like mode, respectively. Fig. 5 
shows the modal radiation patterns of the three modes at 5.0 
GHz or 5.7 GHz. All the three modes generate broadside 
radiation patterns. 

To excite the three modes, a probe is placed close to the 
U-slot (as shown in Fig. 2), where the characteristic E-field of 
all the three modes are non-zero (as shown in Fig. 4). With the 

 
Fig. 3.  (a) Modal significance and (b) Characteristic angle of U-slot structure. 
The characteristic angle difference between the Mode 2 and 1 is represented 
by M 2 – M 1, and the characteristic angle difference between the Mode 3 and 
2 is represented by M 3 – M 2. 

 
Fig. 4.  Modal currents and electric fields of the U-slot structure. (a) J1 at 5.0 
GHz. (b) J2 at 5.0 GHz. (c) J2 at 5.7 GHz. (d) J3 at 5.7 GHz. (e) E1 at 5.0 GHz. 
(f) E2 at 5.0 GHz. (g) E2 at 5.7 GHz. (h) E3 at 5.7 GHz. The main directions of 
the modal currents around the feeding position are also added to the figure in 
the form of bold white arrow. The modal currents and electric fields are 
normalized, and the color bar reflects their relative intensity. 

 
Fig. 5.  Modal radiation patterns of the U-slot structure. (a) Mode 1 at 5.0 GHz. 
(b) Mode 2 at 5.0 GHz. (c) Mode 2 at 5.7 GHz. (d) Mode 3 at 5.7 GHz. 

 
Fig. 6.  Effects of different dimensions on modal significance of U-slot 
structure. (a) wp. (b) a. (c) b. (d) c. 
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feeding area determined with the aid of CMA, the optimum 
feeding position is further optimized (in Section B). 

B. Parametric Study 
Key parameters are studied using CMA for understanding 

how the mode behavior is affected, followed by a quantitative 
optimization of the antenna performance. 

Fig. 6 shows the effects of wp, a, b, and c on the resonant 
frequencies and the modal significances. As can be seen from 
Fig. 6(a), the resonant frequencies of the TM10/01-like modes 
both increase with smaller wp owing to reduced electrical size 
of the resonator. The slot mode is almost unaffected. As shown 
in Figs. 6(b)–(d), the slot mode is mainly affected by its length 
and position. The resonant frequency of the TM01-like mode 
changes with the U-slot geometry due to similar current 
distribution. By contrast, the TM10-like mode is almost 
unaffected because of its horizontally directed current 
distribution. The variation of these three modes with the above 
parameters can also be analyzed in combination with their 

current distribution as shown in Fig. 4, and the results are 
consistent. 

The parametric study with CMA provides insights for 
manipulating the mode distribution against frequency. With the 
coaxial probe included, the antenna is further quantitatively 
investigated for optimum performance. 

Fig. 7(a) shows the input impedance of the optimum U-slot 
CP patch antenna. As can be seen, the input reactance across 
zero for three times, associated with the three modes 
aforementioned. The resonant frequencies are not strictly 
corresponded due to the reactive loading of the feeding probe. 
Fig. 7(b) shows the Ex and Ey components in far field along 
positive z axis. In the band of interest, the amplitude and phase 
both vary smoothly, implying a wide AR bandwidth. The 
differences of the amplitude and the phase both cross the 
critical line twice, indicating two AR minimum poles. 

Fig. 8 shows the effects of the feeding position (xf, yf) and the 
length of U-slot (d) on the |S11| and AR. As can be observed 
from Fig. 8(a), when xf increases (corresponding to a shift of the 
probe toward positive x-axis), both the impedance matching 
and AR become worse. As can be observed from Fig. 8(b), the 
impedance bandwidth reduces and AR increases with growing 
yf. For smaller yf, the impedance bandwidth is large but the AR 
bandwidth reduces. As can be seen from Fig. 8(c), the effect of 
decreasing d is similar to that of increasing yf. In summary, the 
feeding position and the length of U-slot can be optimized for 
impedance matching and AR by adjusting xf, yf, and d. 

C. Empirical Design Formulas 
Empirical formulas are necessary for fast engineering design. 

Therefore, the empirical formulas for estimating the three 
modal resonant frequencies based on CMA are derived. The 
resonant frequencies correspond to half of the working 
wavelength, that is 

( )2 ,eff efff c l ε=  (4) 
1 2

p

1 1 101 ,
2 2

r r
eff

h
w

ε εε
−

 + −
= + +  

 
 (5) 

where c is the speed of light in free space, εeff is the effective 
permittivity of substrate, and leff is the effective length. 

The next is to find the effective length of the three modes. 
Since the current of the TM01-like mode is interrupted by the 
horizontal slot, the formulas of its resonant frequency need to 
be revised. Based on the modal current distribution, 

Slot 2 2 ,effl b d c u= − + −  (6) 

( )10TM -like
p p2 ,effl w l l= + ∆  (7) 

( )01TM -like
p p2 ,effl l a u l w= − − + ∆  (8) 

( ) p
p

p

0.3 0.264
0.412 ,

0.258 0.8
eff

eff

l h
l l h

l h
ε

ε
  + +

∆ =     − +  

 (9) 

( ) p
p

p

0.3 0.264
0.412 ,

0.258 0.8
eff

eff

w h
l w h

w h
ε

ε
  + +

∆ =     − +  

 (10) 

where b, d, c, u, wp, lp, and a are structural parameters shown in 
the caption of Fig. 2. The terms Δl(lp) and Δl(wp) are the 
extended lengths of the two sides of the patch antenna due to 

 
Fig. 7.  (a) Input impedance of the U-slot CP patch antenna and (b) Magnitude 
and phase of Ex and Ey components of the U-slot CP patch antenna at the 
broadside direction. 

 
Fig. 8.  Effects of different dimensions on |S11| and AR of the U-slot CP patch 
antenna. (a) xf. (b) yf. (c) d. 
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the edge effect, respectively [2]. 
Substituting (6)–(8) into (4), we can obtain the resonant 

frequencies of the three modes. The results obtained from 
empirical formulas and CMA are compared in Table Ⅰ with 
good agreement. The empirical formulas are helpful for faster 
estimating the size of antennas. 

The design process of U-slot antenna is summarized. Firstly, 
the characteristic modes of U-slot structure are analyzed to 
reveal the working principle of wideband circular polarization. 
Then, key parameters are qualitatively analyzed and 
quantitatively optimized. Finally, some empirical formulas are 
derived based on CMA. 

IV. WIDEBAND E-SHAPED CP PATCH ANTENNA 
The proposed method is further validated in the design of a 

E-shaped CP patch antenna. The configuration of the proposed 
E-shaped CP patch antenna is shown in Fig. 9. The dielectric 
substrate used is the same as that in the U-slot antenna design. 

A. CMA of E-shaped Structure 
The CMA’s results of the optimum E-shaped CP patch 

antenna are shown in Fig. 10–12. As can be seen from Fig. 10, 
mode 4 resonates at about 2.1 GHz is the slot mode and cannot 
be effectively excited at the center frequency of 5.5 GHz. 

Therefore, the three modes to be used include the TM10-like 
mode (mode 1), the TM01-like mode (mode 2), and the 
TM11-like mode (mode 3). Two pair of modes are formed 
(mode pair 1 & 2 and mode pair 1 & 3), each pair with 
90-degree phase difference and similar MS. For the first pair, 
mode 1 and mode 2 exhibit a 90-degree phase difference at 
about 5.1 GHz. For the second pair, mode 1 and mode 3 also 
exhibit a 90-degree phase difference but at a higher frequency 
of approximately 5.8 GHz. It means that two AR minima poles 
will be formed to realize wideband circular polarization. 

Fig. 11 shows the modal currents of the three modes at 5.1 
GHz or 5.8 GHz where CA difference is equal to 90 degrees. As 
can be seen, the modal currents and modal radiation patterns of 
the same mode at different frequencies are similar. J1 is mainly 
in the x direction, J2 and J3 are mainly in the y direction. 
Although the slot mode does not directly participate in the 
radiation, the slot plays a key role in manipulating the 
TM10-like mode. The long vertical slot arm has an obvious 
blocking effect on the horizontal current, and the current path of 
TM10-like mode starts from the patch’s edge and ends at the 
long vertical slot arm. In addition, all the three modes almost 
generate broadside radiation patterns, as shown in Fig. 12. 

In short, the triple-mode design method to realize wideband 
circular polarization is consistent with that of the proposed 
U-slot structure above, but the three modes used are not exactly 
the same. 

The feeding scheme follows the principles from the U-slot 
design. As shown in Fig. 9, the probe is placed near the inner 
edge of the shorter vertical slot arm. With the approximate 
feeding area determined, the optimum feeding position is 
further optimized through parametric analysis (in section B). 

B. Parametric Study 
With the coaxial probe included, the antenna is further 

quantitatively investigated for optimum performance. 

TABLE I 
COMPARISONS BETWEEN EMPIRICAL FORMULAS AND CMA FOR U-SLOT CP 

ANTENNA 

Resonant Frequency fSlot fTM10-like fTM01-like 

Empirical Formulas 4.69 GHz 5.56 GHz 6.62 GHz 
CMA 4.70 GHz 5.30 GHz 6.56 GHz 

 

 
Fig. 9.  Geometry of the proposed E-shaped CP patch antenna. Dimensions are 
wg = lg = 60, ws =42.2, ls = 24.2, wp =29.7, lp = 12.8, h = 6.3, b = 12, c =10, d = 
5.3, u = 1.2, xf = 1.7, yf = –2.7 (Unit: millimeter). 

 
Fig. 10.  (a) Modal significance and (b) Characteristic angle of the E-shaped 
structure. The characteristic angle difference between the Mode 2 and 1 is 
represented by M 2–M 1, and the characteristic angle difference between the 
Mode 3 and 1 is represented by M 3–M 1. 

 
Fig. 11.  Modal currents of the E-shaped CP structure. (a) J1 at 5.1 GHz 
(TM10-like mode). (b) J2 at 5.1 GHz (TM01-like mode). (c) J1 at 5.8 GHz 
(TM10-like mode). (d) J3 at 5.8 GHz (TM11-like mode). The main direction of 
the modal currents around the feeding position are also added to the figure in 
the form of bold white arrow. The modal currents and electric fields are 
normalized, and the color bar reflects their relative size intensity. 

 
Fig. 12.  Modal radiation patterns of the E-shaped structure. (a) Mode 1 at 5.1 
GHz. (b) Mode 2 at 5.1 GHz. (c) Mode 1 at 5.8 GHz. (d) Mode 3 at 5.8 GHz. 
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Fig. 15.  Photograph of (a) the fabricated U-slot CP patch antenna. (b) the 
fabricated E-shaped CP patch antenna. (c) Far-field measurement 
environment. 

Fig. 13(a) shows the input impedance of the optimum 
E-shaped CP patch antenna. Similar to the proposed U-slot CP 
antenna, the input reactance crosses zero for three times. In the 
band of interest, both the input resistance and reactance vary 
smoothly against frequency, a result of combined triple-mode 
contribution. Fig. 13(b) shows the Ex and Ey components in far 
field along positive z axis. The amplitude and phase differences 
of far-field Ex and Ey components along z-propagation varies 
around 0 V and 90 degrees, respectively. The amplitude and 
phase differences of the two components have crossed the 
critical line twice, indicating a wideband AR performance of 
two AR minima poles. The results are consistent with those 
from CMA. 

Fig. 14 shows the effects of different feeding position on |S11| 
and AR for the E-shaped CP patch antenna. As can be seen 
from Fig. 14(a) and 14(b), decreasing xf does not provide good 
impedance matching and AR whilst yf can be optimized for a 
tradeoff between the impedance and AR bandwidth.  

Based on the two cases of U-slot antenna and E-shaped 
antenna, it can be safely concluded that the optimum feeding 
area guided by CMA is helpful for estimating the optimum 
feeding position. In addition, the feeding position is the key to 
exciting the three desired modes simultaneously for wideband 
circular radiation. 

C. Empirical Design Formulas 
Since the current of the TM10-like mode is interrupted by the 

longer vertical slot, the formulas of its resonant frequency are 
revised. Based on the modal current distribution, 

( )10TM -like 2 2 2 ,eff p pl w c u l l= + − + ∆  (11) 

( )01TM -like 2 ,eff p pl l l w= + ∆  (12) 

( ) ( )
11

1/22 2

TM -like 1 1 ,
2 2eff

p p p p

l
w l l l l w

−
    
    = +
    + ∆ + ∆    

 (13) 

where wp, c, u, lp, and wp are structural parameters shown in the 
caption of Fig. 10. The terms Δl(wp) and Δl(lp) are the extended 
lengths due to the edge effect [2].  

Substituting (11)–(13) into (4), the resonant frequencies are 
calculated. Table Ⅱ shows the comparisons of resonant 
frequencies calculated by CMA and by the empirical formulas 
with good agreement. 

The design process for the E-shaped CP patch antenna is 
similar to that of the U-slot antenna. For brevity, we do not 
repeat it again. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
To validate the analysis and design of the two proposed 

antennas, prototypes of U-slot and E-shaped CP patch antennas 
are fabricated and measured, as shown in Fig. 15–19. The 

 
Fig. 13.  (a) Input impedance of the E-shaped CP patch antenna and (b) 
Magnitude and phase of Ex and Ey components of the E-shaped CP patch 
antenna at the broadside direction. 

 
Fig. 14.  Effects of different dimensions on |S11| and AR of the E-shaped CP 
patch antenna. (a) xf. (b) yf. 

TABLE Ⅱ 
COMPARISONS BETWEEN EMPIRICAL FORMULAS AND CMA FOR E-SHAPED 

CP ANTENNA 

Resonant Frequency fTM10-like fTM01-like fTM11-like 

Empirical Formulas 4.32 GHz 5.39 GHz 6.11 GHz 
CMA 4.28 GHz 5.77 GHz 6.16 GHz 

 

 
Fig. 16.  Simulated and measured results of the U-slot CP patch antenna. (a) 
|S11|. (b) AR and boresight gain. 
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simulated and measured |S11|, gain, AR, and radiation patterns 
are in good agreement. For the U-slot / E-shaped patch antenna, 
the measured 10-dB impedance bandwidth and the 3-dB AR 
bandwidth are 4.80–6.37 GHz / 4.89–6.34 GHz and 4.93–6.09 
GHz / 4.91–6.50 GHz, respectively. The overlapping 
bandwidth are 21.1% (4.93–6.09 GHz) and 25.4% (4.91–6.34 
GHz), respectively. The boresight gain varies from 5.2 to 7.4 
dBic (for U-slot) and 5.0 to 7.3 dBic (for E-shaped) in the 
overlapping bandwidth, respectively. For both antennas, three 
modes are excited with two AR minima poles present in 
operating band, which is the key to increase the CP bandwidth 
without greatly increasing the antenna volume. 

The simulated and measured radiation patterns are shown in 
Fig. 17 and 19. The beam squint is mainly caused by the 
off-center feeding probe and asymmetric slots. These two 

factors make the amplitude and phase distribution of surface 
current asymmetric and result in the beam squint. Moreover, 
the beam squint is more obvious in the high frequency band, 
resulting in the decrease of the boresight gain in the high 
frequency band. The phenomenon of similar structures also 
appears in references [16], [23], [27]. The cross-polarization 
level is better than –15 dB at the broadside direction across the 
bandwidth. 

 
Fig. 17.  Simulated and measured normalized radiation patterns of the U-slot 
CP patch antenna. (a) 5.2 GHz. (b) 5.5 GHz. (c) 5.8 GHz. 

 
Fg. 18.  Simulated and measured results of the E-shaped CP patch antenna. (a) 
|S11|. (b) AR and boresight gain. 

 
Fig. 19.  Simulated and measured normalized radiation patterns of the 
E-shaped CP patch antenna. (a) 5.2 GHz. (b) 5.5 GHz. (c) 5.8 GHz. 

 
Fig. 20.  Comparisons of the CP fractional bandwidth and antenna volume for 
the proposed U-slot antennas and other kinds of CP patch antennas. (λ0: 
Corresponding to the center operation frequency, and the CP fractional 
bandwidth is defined as the bandwidth overlapped by 10-dB return loss and 
3-dB AR) 
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To highlight the novelties and advantages of the two 
proposed antennas, the comparison results with reported works 
are shown in Fig. 20 and the details are listed in Table Ⅲ. For 
fair comparison, the proposed U-slot CP patch antenna is 
optimized at different dielectric thicknesses based on the 
proposed triple-mode operation, including h = 2, 3, 4, 5, 6.3, 
and 8 mm. The center frequencies of CP U-slot antennas with 
different dielectric thicknesses are all optimized to about 5.5 
GHz. As can be seen, the proposed CP antennas have the 
advantages of simpler structure, smaller size, and larger 
bandwidth. For example, the CP bandwidths of the proposed 
two antennas both excess 21.1%, which are about 4.9 times 
wider than the conventional corner-truncated U-slot patch 
antennas (4.3% in bandwidth) under the similar thickness, and 
9.4 times wider than the conventional corner-truncated U-slot 
patch (2.2% in bandwidth) under the similar volume [27]. 

VI. CONCLUSION 
A method of triple-mode operation by capacitive loading is 

proposed for significant bandwidth enhancement of single-feed 
CP microstrip patch antennas with the aid of CMA. Guided by 
the proposed method, two types of triple-mode CP antennas are 
thoroughly analyzed and experimentally verified for proof of 
concept. The proposed U-slot antenna works with the slot mode, 
TM10-like mode, and TM01-like mode and the proposed 
E-shaped antenna works with the TM10-like mode, TM01-like 
mode, and TM11-like mode. Two important functions of 
resonant-slot loading are revealed with CMA, including the 
introduction of additional modes and the manipulation of 
microstrip patch modes. In addition to the revealed new 
physical insights and performance improvements, the 
application of CMA in antenna engineering is further extended 
to the derivation of mode-based empirical formulas for fast 
engineering design. The proposed antenna designs can be good 
candidates for CP phased array in space applications. Since the 
proposed triple-mode CP concept is independent of any 
specific structure, the method can be extended to other types of 
CP antennas, making a timely contribution to the development 

of the next generation of space-ground-integrated smart 
networks. 
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