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The concentrating efficiency of a thermal concentrator can be reflected in the ratio of its interior to exterior temperature gradients,
which, however, has an upper limit in existing schemes. Here, we manage to break this upper limit by considering the couplings
of thermal conductivities and improve the concentrating efficiency of thermal concentrators. For this purpose, we first discuss a
monolayer scheme with an isotropic thermal conductivity, which can break the upper limit but is still restricted by its geometric
configuration. To go further, we explore another degree of freedom by considering the monolayer scheme with an anisotropic
thermal conductivity or by adding the second shell with an isotropic thermal conductivity, thereby making the concentrating effi-
ciency completely free from the geometric configuration. Nevertheless, apparent negative thermal conductivities are required, and
we resort to external heat sources realizing the same effect without violating the second law of thermodynamics. Finite-element
simulations are performed to confirm the theoretical predictions, and experimental suggestions are also provided to improve fea-
sibility. These results may have potential applications for thermal camouflage and provide guidance to other diffusive systems
such as static magnetic fields and dc current fields for achieving similar behaviors.
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1 Introduction

The theory of transformation thermotics [1-3] has pro-
moted an advanced control of heat transfer based on ther-
mal metamaterials [4-7]. As a representative example, a
thermal concentrator [8-31] can increase its interior tem-
perature gradient without distorting its exterior one. So
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far, many schemes have been proposed to design ther-
mal concentrators. The initial explorations are based on
the theory of transformation thermotics [8-21] which is a
bridge linking space transformations and material transfor-
mations. Therefore, the effect of thermal concentrating can
be achieved by coating a region (i.e., the core) with a de-
signed shell (i.e., the thermal concentrator). This scheme has
three features: (1) the thermal conductivities inside and out-
side the shell are identical; (2) the shell has an anisotropic
thermal conductivity that is commonly realized by a lay-
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ered structure [22-26]; and (3) both temperature gradient and
heat flux are enhanced in the core. An alternative scheme
is based on the effective medium theory [27-29, 32-34] with
also three features: (1) the thermal conductivity inside the
shell should be smaller than that outside the shell; (2) the
shell requires only a homogeneous and isotropic thermal con-
ductivity; and (3) temperature gradient increases but heat
flux decreases in the core. Recently, topology optimization
has also become a powerful tool to design thermal concen-
trators [30, 31], which largely reduces the requirements for
materials and structures [35-40].

Despite varieties of schemes, the concentrating efficiency
of a thermal concentrator, commonly reflected in the ratio
of its interior to exterior temperature gradients, has an up-
per limit. Specifically, when a circular concentrator with in-
ner radius rc and outer radius rs is designed, the upper limit
for the concentrating efficiency is η = rs/rc [8-33], indi-
cating that the isotherms in the shell are completely com-
pressed to the core. To reach the upper limit, the theory
of transformation thermotics requires to design a shell with
an extremely anisotropic thermal conductivity [41-45], and
the effective medium theory needs to fabricate a core with a
near-zero thermal conductivity [27-29]. However, it is still
challenging to break the upper limit for the concentrating
efficiency.

To solve the problem, here we investigate a monolayer
scheme and two extended schemes with the couplings of ther-
mal conductivities. All these three schemes feature the simul-
taneous concentrating of heat flux and temperature gradient
with only homogeneous materials. More importantly, they
also contribute to the much higher concentrating efficiency
than existing schemes, including traditional thermal con-
centrators based on transformation thermotics, the effective
medium theory, topology optimization, etc. Nevertheless,
apparent negative thermal conductivities are required, which
can be effectively realized with external heat energy and have
been applied to design thermal metamaterials [46-50].

2 Monolayer scheme with an isotropic thermal
conductivity

We first discuss a monolayer scheme in the Cartesian coordi-
nate system xi (i = 1, 2, 3 for three dimensions and i = 1, 2
for two dimensions). A confocal core-shell structure is em-
bedded in a background (Figure 1(a)). The semi-axis of the
core (or shell) along the xi axis is denoted as rci (or rsi). The
thermal conductivities of the core, shell, and background are
denoted as κc, κs, and κb, respectively. The conversion be-
tween the Cartesian coordinates xi and elliptical (or ellip-

soidal) coordinates ρ j is

∑
i

x2
i

ρ j + r2
ci

= 1 (1)

with parameters of j = 1, 2, 3 for three dimensions and
j = 1, 2 for two dimensions.

In particular, the coordinate ρ1 (> −r2
ci) plays the role that

the radius plays in spherical coordinates. For example, the
inner and outer boundaries of the shell can be denoted as
ρ1 = ρc (= 0) and ρ1 = ρs, respectively. In the presence
of a uniform thermal field along the xi axis, thermal conduc-
tion equation can be expressed in the elliptical (or ellipsoidal)
coordinate system as [51]:

∂

∂ρ1

[
g (ρ1)

∂T
∂ρ1

]
+

g (ρ1)
ρ1 + r2

ci

∂T
∂ρ1
= 0, (2)

with a definition of g (ρ1) =
∏

i

(
ρ1 + r2

ci

)1/2
. For three dimen-

sions, 4πg (ρ1 = 0) /3 = 4πrc1rc2rc3/3 (or 4πg (ρ1 = ρs) /3 =
4πrs1rs2rs3/3) represents the volume of the core (or the core
plus the shell). For two dimensions, πg (ρ1 = 0) = πrc1rc2

(or πg(ρ1 = ρs) = πrs1rs2) denotes the area of the core (or
the core plus the shell). The temperature distributions along
the xi axis in the core Tci, shell Tsi, and background Tbi can
be expressed as [51]:

Tci = Acixi,

Tsi =
[
Asi + Bsiϕi (ρ1)

]
xi,

Tbi =
[
Abi + Bbiϕi (ρ1)

]
xi,

(3)

with a definition of ϕi (ρ1) =
∫ ρ1

ρc

[(
ρ1 + r2

ci

)
g (ρ1)

]−1
dρ1. Aci,

Asi, Bsi, and Bbi can be determined by the continuities of tem-
perature and normal heat flux (see sect. A1 of Appendix).
Since the temperature distribution in the background should

b

s
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Figure 1 (Color online) (a) Monolayer scheme with an isotropic ther-
mal conductivity. (b) Concentrating efficiency η as a function of geometric
configuration rs1/rc1. Lines and points denote theoretical results and simu-
lation results, respectively. The geometric parameters (rc1, rc2, rs1, and rs2)
of a thermal concentrator are determined by Lc1 and rs1/rc1 (see eq. (a7) in
sect. A1 of Appendix)
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be undistorted, we take Bbi = 0 and then obtain

κb =
Lciκc + (1 − Lci) κs + (1 − Lsi) (κc − κs) f

Lciκc + (1 − Lci) κs − Lsi (κc − κs) f
κs, (4)

with a definition of f = g (ρc) /g (ρs) =
∏

i
rci/rsi. The

shape factor (see eqs. (a3) and (a4) in sect. A1 of Appendix)
Lci (or Lsi) reflects the flattening degree of the ellipse. For
two dimensions, the shape factors can be written as Lw1 =

rw2/ (rw1 + rw2) and Lw2 = rw1/ (rw1 + rw2), where w can take
c or s. The further the shape factor is away from 0.5, the more
flattening the ellipse is.

Therefore, the concentrating efficiency of a thermal con-
centrator can then be defined as the ratio of its interior and
exterior temperature gradients (taking Bbi = 0),

η =
∇Tci

∇Tbi
=

Aci

Abi
=

κs
Lciκc + (1 − Lci) κs − Lsi (κc − κs) f

. (5)

For a two-dimensional circular case with Lci = Lsi = 1/2,
eq. (5) can be reduced to

η =
2κs

κc + κs − (κc − κs) f
. (6)

For a three-dimensional spherical case with Lci = Lsi = 1/3,
eq. (5) can be reduced to

η =
3κs

κc + 2κs − (κc − κs) f
. (7)

We also consider the same thermal conductivities inside
and outside the shell and then obtain two coupling conditions
to satisfy κc = κb,

κs = κc, (8)

− 1 − Lci − (1 − Lsi) f
Lci − Lsi f

κs = κc. (9)

Eq. (8) leads to a trivial case with κc = κs = κb and η = 1.
However, if we apply the coupling condition described by
eq. (9), the concentrating efficiency largely increases,

η = f −1 =
∏

i

rsi/rci. (10)

Clearly, the concentrating efficiency exceeds the upper limit
for existing thermal concentrators η = rs1/rc1, and a smaller
Lc1 yields a larger η (Figure 1(b)). However, the concentrat-
ing efficiency is still restricted by the geometric configura-
tion, so we further consider the following two schemes by
adding another degree of freedom.

3 Monolayer scheme with an anisotropic ther-
mal conductivity

In this section, we consider a shell with an anisotropic ther-
mal conductivity. Since it is not convenient to unify two and

three dimensions, we independently discuss them. Neverthe-
less, the conclusion of three dimensions is similar to that of
two dimensions. We first discuss a two-dimensional circular
shell with inner and outer radii of rc and rs, respectively (Fig-
ure 2(a)). The thermal conduction equation can be written in
the cylindrical coordinate system (r, θ) as [41]:

1
r
∂

∂r

(
rκsrr
∂T
∂r

)
+

1
r
∂

∂θ

(
κsθθ
∂T
r∂θ

)
= 0, (11)

where κsrr and κsθθ are the radial and tangential thermal con-
ductivities of the shell, respectively. The temperature distri-
butions of the core Tc, shell Ts, and background Tb can be
written as [41]:

Tc = Acr cos θ,

Ts =
(
Asrds1 + Bsrds2

)
cos θ,

Tb =
(
Abr + Bbr−1

)
cos θ,

(12)

with definitions of ds1 =
√
κsθθ/κsrr and ds2 = −

√
κsθθ/κsrr.

Ac, As, Bs, and Bb are four constants to be determined by the
boundary conditions (see sect. A2 of Appendix). By taking
Bb = 0, we can further derive

κb =
ds1 (κc − ds2κsrr) − ds2 (κc − ds1κsrr) f (ds1−ds2)/2

κc − ds2κsrr − (κc − ds1κsrr) f (ds1−ds2)/2 κsrr, (13)

with a definition of f = r2
c/r

2
s . We also define the concentrat-

ing efficiency as:

η =
Ac

Ab
=

(ds1 − ds2) κsrr f (ds1−1)/2

κc − ds2κsrr − (κc − ds1κsrr) f (ds1−ds2)/2 . (14)

For an isotropic case with ds1 = −ds2 = 1, eq. (14) can be
simplified as:

η =
2κsrr

κc + κsrr − (κc − κsrr) f
, (15)

which has the same form as eq. (6) in sect. 2.
We also obtain two coupling conditions for κc = κb,

ds1κsrr = κc, (16)

b
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Figure 2 (Color online) (a) Monolayer scheme with an anisotropic thermal
conductivity. (b) κsθθ/κc and η as a function of κsrr/κc when rs/rc = 2. Lines
and points denote theoretical results and simulation results, respectively.
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ds2κsrr = κc. (17)

Eqs. (16) and (17) can be unified as:

κsrrκsθθ = κ
2
c , (18)

which is plotted with the dotted line in Figure 2(b).
When the thermal conductivities of the core and shell sat-

isfy eq. (18), eq. (14) becomes

η = f −(1−κc/κsrr)/2 = (rs/rc)1−κc/κsrr , (19)

which is plotted with the dashed-dotted line in Figure 2(b).
When κsrr/κc → 0+, heat flow bypasses the core, resulting
in the uniform temperature in the core and η → 0. Never-
theless, the shell plays a different role when κsrr/κc is nega-
tive because there is a circumfluence (see the discussion in
sect. 6) between the core and the shell. As κsrr/κc → 0−,
most heat flow goes from the cold end of the core back to
the hot end of the core (through the shell), thereby leading
to η → ∞. Moreover, we can observe η → rs/rc when
κsrr/κc → ±∞, which is just the upper limit for existing con-
centrating efficiency (see the solid line in Figure 2(b)). If the
thermal conductivity of the shell is isotropic and nontrivial
κsrr/κc = 1/ds2 = −1, the concentrating efficiency also ex-
ceeds the upper limit and becomes η = r2

s /r
2
c , which is in

accordance with the two-dimensional conclusion in sect. 2.
Therefore, the concentrating efficiency can exceed the upper
limit and even approach infinity when κsrr/κc → 0−. The
two-dimensional conclusion can also be extended to three di-
mensions, which is discussed in sect. A3 of Appendix.

4 Bilayer scheme with isotropic thermal conduc-
tivities

In this section, we consider the second shell whose isotropic
thermal conductivity and semi-axis along the xi axis are de-
noted as κt and rti, respectively (Figure 3(a)). With the con-
clusion of the monolayer scheme (i.e., eq. (4)), the effective
thermal conductivity of the core and the first shell κcs can be
calculated by

κcs =
Lciκc + (1 − Lci) κs + (1 − Lsi) (κc − κs) f

Lciκc + (1 − Lci) κs − Lsi (κc − κs) f
κs. (20)

We then treat the core and the first shell as an effective core
with an effective thermal conductivity of κcs, so we can fur-
ther derive

κb =
Lsiκcs + (1 − Lsi) κt + (1 − Lti) (κcs − κt) p

Lsiκcs + (1 − Lsi) κt − Lti (κcs − κt) p
κt, (21)

with a definition of p = g (ρs) /g (ρt) =
∏

i
rsi/rti. ρt denotes

the outer boundary of the second shell. Lti is the shape factor

of the second shell along the xi axis,

Lti =
g (ρt)

2

∫ ∞

ρt

[(
ρ1 + r2

ci

)
g (ρ1)

]−1
dρ1. (22)

We can also express the concentrating efficiency as:

η =
Aci

Abi
=

κsκt
λ1 + λ2 + λ3

, (23)

where λ1, λ2, and λ3 take the form of
λ1 = [Lciκc + (1 − Lci) κs]

× [
Lsiκs + (1 − Lsi) κt − Lti (κs − κt) p

]
,

λ2 = −Lti (κc − κs) [(1 − Lsi) κs + Lsiκt] f p,

λ3 = Lsi (1 − Lsi) (κc − κs) (κs − κt) f .

(24)

As a more general model, the bilayer scheme can also be
reduced to the monolayer scheme in sect. 2 at two certain
conditions. When κc = κs, eq. (23) can be simplified as:

η =
κt

Lsiκs + (1 − Lsi) κt − Lti (κs − κt) p
. (25)

When κs = κt, eq. (23) becomes

η =
κt

Lciκc + (1 − Lci) κt − Lti (κc − κt) f p
. (26)

Obviously, eqs. (25) and (26) have similar forms as eq. (5) in
sect. 2.

We can also derive two coupling conditions for κc = κb,

M (κs, κt) = κc, (27)

N (κs, κt) = κc. (28)

M and N are two analytical functions. Therefore, one κt cor-
responds to two κs for satisfying κc = κb, i.e., κs = m (κt)

being a continuous function (see the dotted line in the upper
inset of Figure 3(b)) and κs = n (κt) being a quasi-hyperbolic
function (see the dotted line in the lower inset of Figure 3(b)).
We do not express the concrete forms of m and n because they
are too complicated.
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Figure 3 (Color online) (a) Bilayer scheme with isotropic thermal con-
ductivities. (b) κs/κc and η as a function of κt/κc when rs1/rc1 = 1.2,
rt1/rc1 = 1.4, and Lc1 = 1/3. Lines and points denote theoretical results
and simulation results, respectively.
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When eq. (27) is satisfied, the upper limit of η = rt1/rc1

can be broken, but the concentrating efficiency can still not
tend to infinity (see the dashed-dotted line in the upper in-
set of Figure 3(b)). Moreover, eq. (27) contains two special
cases that can be reduced to the conclusion in sect. 2. One
features a concentrating efficiency of η = f −1 with the same
thermal conductivities of the second shell and core,

−1 − Lci − (1 − Lsi) f
Lci − Lsi f

κs = κt = κc. (29)

The other features a concentrating efficiency of η = p−1 with
the same thermal conductivities of the first shell and core,

κs = −
1 − Lsi − (1 − Lti) p

Lsi − Lti p
κt = κc. (30)

Fortunately, eq. (28) can lead to an infinite efficiency.
κt/κc → 0− and κt/κc → 0+, respectively, yield η → ∞ and
η→ −∞, and the thermal conductivity of the first shell satis-
fies

−1 − Lci − (1 − Lsi) f
Lci + (1 − Lsi) f

κs ≈ κc. (31)

Meanwhile, κt/κc → ∓∞ can also lead to η → ±∞, and the
thermal conductivity of the first shell satisfies

−1 − Lci + Lsi f
Lci − Lsi f

κs ≈ κc. (32)

Moreover, eq. (28) also contains a special case that can be
reduced to the conclusion in sect. 2. That is, the concentrat-
ing efficiency of η = ( f p)−1 occurs when the two shells have
the same thermal conductivities,

κc = −
1 − Lci − (1 − Lti) f p

Lci − Lti f p
κs

= −1 − Lci − (1 − Lti) f p
Lci − Lti f p

κt.

(33)

There is another case for η = ( f p)−1 if the thermal conduc-
tivities of the two shells satisfy

κc = −
1 − Lci − (1 − Lsi) f

Lci − Lsi f
κs

= −1 − Lsi − (1 − Lti) p
Lsi − Lti p

κt.

(34)

Conductivity coupling occurs layer by layer in this case. The
core is coupled with the first shell described by eq. (9). Then,
they are treated as an effective core with an effective thermal
conductivity of κc. The effective core is then coupled with
the second shell described by the similar form of eq. (9).

Another unique feature of eq. (28) is the concentrating ef-
ficiency of η < 0 when the thermal conductivity of the second
shell satisfies

κt >
1 − Lsi + Lti p

1 − Lsi − (1 − Lti) p
κc, (35)

or

0 < κt <
Lsi − Lti p

Lsi + (1 − Lti) p
κc, (36)

indicating that the temperature gradient in the core changes
its direction.

Then we can draw a brief conclusion for these three
schemes. The monolayer scheme with an isotropic thermal
conductivity can break the upper limit but is still restricted by
its geometric configuration. To be free from geometric con-
figurations, we further consider the monolayer scheme with
an anisotropic thermal conductivity and the bilayer scheme
with isotropic thermal conductivities. For the former, the ef-
ficiency can tend to infinity with κsrr/κc → 0−. For the lat-
ter, the efficiency can also reach infinity when κt/κc → 0−

or κt/κc → −∞. Moreover, the latter features η < 0 if the
coupling condition is appropriately chosen.

5 Finite-element simulations of thermal concen-
trators

We also perform finite-element simulations to confirm the
theories with COMSOL Multiphysics (http://www.comsol.
com/). From a practical perspective, although interfacial
thermal resistance exists widely [52-54], its effect at the
macroscopic scale is not dominant so it is reasonable to
ignore it. Without loss of generality, we consider a two-
dimensional case with size 10 cm×10 cm and set the thermal
conductivities of the core and background as 1 W m−1 K−1.
The left boundaries are set at 313 K, the right boundaries
are set at 273 K, and both the upper and lower boundaries
are adiabatic. To quantitatively compare the concentrating
efficiency of different thermal concentrators, we introduce a
dimensionless temperature of T ∗ = 100(T − T0)/T0 and a
dimensionless position of x∗ = x/w, where T0 and w denote
the central temperature and half-length of the system, respec-
tively.

Thermal concentrating aims to increase the temperature
gradient in the core without distorting that in the background.
In order to confirm eqs. (5), (8), and (9) and demonstrate the
expected case shown in Figure 1, we design three structures
with different shape factors, and the corresponding results are
presented in Figure 4(a)-(c). The temperature profiles outside
the shells are undistorted as if there was not core-shell struc-
tures in the center. Meanwhile, the isotherms in the cores
are concentrated as expected. According to the Fourier law
J = −κ∇T , heat fluxes are also enhanced in the cores due to
the larger temperature gradients. The dimensionless temper-
atures are plotted as a function of dimensionless position in
Figure 4(d).

http://www.comsol.com/
http://www.comsol.com/
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By considering the monolayer scheme with an anisotropic
thermal conductivity, we confirm the theoretical prediction of
eqs. (14) and (17). Then, we design three structures with dif-
ferent thermal conductivities of the shells (Figure 5(a)-(c)).
Similar to Figure 4, the temperature profiles in Figure 5(a)-
(c) prove the effect of thermal concentrating. Also, we draw
the temperature distribution of a thermal concentrator (Fig-
ure 5(d)) designed by transformation theory for comparison.
Figure 5(e) displays the temperature distribution along the
central horizontal axis. As presented in Figure 2(b), the tem-
perature gradient in the core increases with the increment

(a) (b)

(c) (d)

Figure 4 (Color online) (a)-(c) Simulations of the monolayer scheme with
an isotropic thermal conductivity. (d) T ∗ as a function of x∗. Parameters: (a)
Lc1 = 0.4 and κs/κc = −0.58; (b) Lc1 = 0.5 and κs/κc = −1; (c) Lc1 = 0.6
and κs/κc = −1.87; and (a)-(c) rs1/rc1 = 1.5 and κc = κb.

(a) (b) (c)

(d) (e)

Figure 5 (Color online) (a)-(c) Simulations of the monolayer scheme with
an anisotropic thermal conductivity. (d) Temperature distribution of the ex-
isting scheme based on transformation theory and η → rs/rc. (e) T ∗ as
a function of x∗. Parameters: (a) κsrr/κc = −0.5; (b) κsrr/κc = −1; (c)
κsrr/κc = −2; (d) κsrr/κc = (r + 100)/r; and (a)-(d) rs/rc = 2 and κc = κb.

of κsrr/κc, leading to the improvement of concentrating effi-
ciency. Thus, we can control κsrr/κc → 0− for an extreme
concentrating efficiency.

For the bilayer scheme with isotropic thermal conductiv-
ities, two coupling conditions (i.e., eqs. (27) and (28)) are
available. Similar to the structures in Figures 4 and 5, those
in Figure 6 also ensure that isotherms outside the shells are
straight and those in the cores are denser, thereby realizing
the effect of thermal concentrating. With the coupling con-
dition of eq. (27), the efficiency changes continuously with
κt/κc (Figure 3(b)). We further design a structure to display
the concentrating efficiency when κt/κc → 0− (Figure 6(a)).
The coupling condition of eq. (28) can lead to an infinite ef-
ficiency. That is, η → +∞ when κt/κc → 0− (Figure 6(b))
or κt/κc → −∞ (Figure 6(c)), and η → −∞ for κt/κc → 0+

(see Figure 6(d)) or κt/κc → +∞ (Figure 6(e)). As shown in
Figure 6(f), the effect of thermal concentrating can be quan-
titatively observed.

6 Experimental suggestions

The coupling conditions require apparent negative thermal
conductivities [46-50], which cannot happen spontaneously
in experiments. To achieve the equivalent effect, we can re-
sort to external heat sources (Figure 7(a)). According to the
thermal uniqueness theorem [55, 56], as long as we realize
the same boundary temperature distributions by adding ex-
ternal heat sources at the inner and outer boundaries of the
shell, we can obtain the same temperature profiles. Since
the central temperature gradient and heat flux in Figure 7(c)
are almost the same as those in Figure 7(b), we prove that
an apparent negative thermal conductivity can be effectively

(a) (b) (c)

(d) (e) (f)

Figure 6 (Color online) (a)-(e) Simulations of the bilayer scheme with
isotropic thermal conductivities. (f) T ∗ as a function of x∗. Parameters: (a)
κs/κc = 0.0826 and κt/κc = −0.05; (b) κs/κc = −1.14 and κt/κc = −0.05;
(c) κs/κc = −0.175 and κt/κc = −10; (d) κs/κc = −0.122 and κt/κc = 15;
(e) κs/κc = −2.83 and κt/κc = 0.05; and (a)-(e) rs1/rc1 = 1.2, rt1/rc1 = 1.4,
Lc1 = 1/3, and κc = κb.
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(a) (b)

(c) (d)

TH TL
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Js Js

′

′

′

=

= -

s<0κb>0κ b>0κ

s=-  s>0κ κb>0κ b>0κ

Figure 7 (Color online) Experimental suggestions. (a) Schematic diagram
for realizing apparent negative conductivity. (b) Without temperature con-
trol. (c) Continuous temperature control. (d) Discrete point heat sources
whose temperatures are shown in Tables 1 and 2. The core and background
in (d) are a brass plate (109 W m−1 K−1) drilled with 2116 air circles with
a radius of 0.1 cm. The shell is drilled with 282 air ellipses with a major
(or minor) semi-axis of 0.35 cm (or 0.02 cm). Other parameters: (b) and (d)
κs = diag(23, 92) W m−1 K−1; (c) κs = diag(−23, −92) W m−1 K−1; and
(b)-(d) rc = 1 cm, rs = 2 cm, κc = κb = 46 W m−1 K−1. The black lines and
blue arrows in (b)-(d) denote isotherms and heat fluxes, respectively.

achieved by means of adding external heat sources. Then
we design a structure as a feasible experimental suggestion
(Figure 7(d)). We add a series of point heat sources at the
inner and outer boundaries of the shell (Figure 7(d)). The

detailed temperatures are presented in Tables 1 and 2, which
can be experimentally controlled by adjusting the voltages of
heaters and coolers according to eqs. (1) and (2) in ref. [55].
The required thermal conductivity can be realized by punch-
ing air holes on a brass plate (109 W m−1 K−1), whose left
and right edges are put into hot (313 K) and cold (273 K)
sinks, respectively. To achieve the thermal conductivities of
the core and background in Figure 7(b), 2116 air circles are
drilled on the brass, leading to an effective thermal conduc-
tivity of 46 W m−1 K−1 (calculated by eq. (11) in ref. [57]).
The shell region is composed of 282 air ellipses, leading to
an effective thermal conductivity of diag(23, 92) W m−1 K−1

(calculated by eq. (11) in ref. [57]). By comparing the tem-
perature distributions in Figure 7(b)-(d), we can confirm that
the scheme in Figure 7(d) can realize the effect of Figure 7(b)
in experiments.

7 Conclusion

To sum up, we break the upper limit for the concentrating
efficiency of existing thermal concentrators by using cou-
pling conditions of thermal conductivities. We first explore
a monolayer scheme with an isotropic thermal conductivity,
which can break the upper limit but is still limited by its
geometric configuration. Then we consider a shell with an
anisotropic thermal conductivity or add the second shell with
an isotropic thermal conductivity as another degree of free-
dom, which renders the concentrating efficiency free from
geometric configurations. Apparent negative thermal con-
ductivities are required in these three schemes, which can
be effectively realized by external energy or thermoelectric
materials. Since negative permeability [58-60] and negative

Table 1 Temperatures of the point heat sources at the outer boundary of the shell in Figure 7(d)

Source Temp. (K) Source Temp. (K) Source Temp. (K) Source Temp. (K)

1 293.00 7 282.30 13 293.00 19 303.70

2 290.24 8 282.69 14 295.76 20 303.30

3 287.68 9 283.78 15 298.32 21 302.22

4 285.45 10 285.45 16 300.55 22 300.55

5 283.78 11 287.68 17 302.22 23 298.32

6 282.69 12 290.24 18 303.30 24 295.76

Table 2 Temperatures of the point heat sources at the inner boundary of the shell in Figure 7(d)

Source Temp. (K) Source Temp. (K) Source Temp. (K) Source Temp. (K)

1 293.00 7 250.34 13 293.00 19 335.67

2 281.96 8 251.79 14 304.04 20 334.21

3 271.67 9 256.05 15 314.33 21 329.95

4 259.83 10 259.83 16 323.17 22 323.17

5 256.05 11 271.67 17 329.95 23 314.33

6 251.79 12 281.96 18 334.21 24 304.04
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electric conductivity [61] have been, respectively, revealed in
static magnetic fields and dc current fields, it is promising to
extend our results to these diffusive fields due to the similar
equation forms (i.e., the Laplace equation). Moreover, the
present theory is applicable not only for thermal concentra-
tors with η > 1 but also for thermal invisible sensors with
η = 1 [62, 63] and thermal cloaks with η = 0 (perfect cloak-
ing) [64, 65] or η < 1 (imperfect cloaking) [66, 67]. Whether
for concentrating, sensing, or cloaking, a typical feature is
the undistorted background temperature distribution, so these
schemes may provide insights into thermal camouflage [68]
and illusion [69, 70] for misleading infrared detection. It
is also promising to extend the related mechanisms towards
multi-function and micro/nano-scale in the future.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 11725521, and 12035004), and the Science and Technol-
ogy Commission of Shanghai Municipality (Grant No. 20JC1414700). We
are grateful to Prof. Chenping Zhu for his useful discussion.
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Appendix

A1 The relationship between undetermined coefficients
in eq. (3)

According to the continuities of temperature and normal heat
flux, we have

Tci|ρ1=ρc
= Tsi|ρ1=ρc

,

Tsi|ρ1=ρs
= Tbi|ρ1=ρs

,

κc
∂Tci

∂ρ1

∣∣∣∣∣
ρ1=ρc

= κs
∂Tsi

∂ρ1

∣∣∣∣∣
ρ1=ρc

,

κs
∂Tsi

∂ρ1

∣∣∣∣∣
ρ1=ρs

= κb
∂Tbi

∂ρ1

∣∣∣∣∣
ρ1=ρs

.

(a1)

With eq. (3), we can express eq. (a1) as:

Aci = Asi + Bsiϕi (ρc) ,

Asi + Bsiϕi (ρs) = Abi + Bbiϕi (ρs) ,

κcAci = κs
[
Asi + 2Bsi/g (ρc) + Bsiϕi (ρc)

]
,

κs
[
Asi + 2Bsi/g (ρs) + Bsiϕi (ρs)

]
= κb

[
Abi + 2Bbi/g (ρs) + Bbiϕi (ρs)

]
.

(a2)

To express ϕi (ρc) and ϕi (ρs) in a physical form, we define
Lci (or Lsi) as the shape factor of the inner (or outer) boundary
of the shell along the xi axis,

Lci =
g (ρc)

2

∫ ∞

ρc

[(
ρ1 + r2

ci

)
g (ρ1)

]−1
dρ1, (a3)

Lsi =
g (ρs)

2

∫ ∞

ρs

[(
ρ1 + r2

ci

)
g (ρ1)

]−1
dρ1, (a4)

with definitions of g (ρc) =
∏

i
rci and g (ρs) =

∏
i

rsi. With

eqs. (a3) and (a4), we can further obtain

ϕi (ρc) =
∫ ρc

ρc

[(
ρ1 + r2

ci

)
g (ρ1)

]−1
dρ1 = 0, (a5)

ϕi (ρs) =
(∫ ∞

ρc

−
∫ ∞

ρs

) [(
ρ1 + r2

ci

)
g (ρ1)

]−1
dρ1

= 2Lci/g (ρc) − 2Lsi/g (ρs) . (a6)

The shape factors satisfy
∑
i

Lci = 1 and
∑
i

Lsi = 1. For two

dimensions, the shape factors can be further reduced to Lc1 =

rc2/ (rc1 + rc2), Lc2 = rc1/ (rc1 + rc2), Ls1 = rs2/ (rs1 + rs2),
and Ls2 = rs1/ (rs1 + rs2). According to the variables of
R = rs1/rc1 and Lc1 in Figure 1(b), we can determine the
geometric parameters (rc1, rc2, rs1, and rs2) of a thermal con-
centrator, with the following relationships:

rc2 =
Lc1

1 − Lc1
rc1,

rs1 = Rrc1,

rs2 =

√
r2

s1 − c2 =

√
R2 (1 − Lc1)2 + 2Lc1 − 1

1 − Lc1
rc1,

(a7)

where the core-shell structure is confocal and c is the half
focal length, i.e., c2 = r2

c1 − r2
c2 =

1−2Lc1

(1−Lc1)2 r2
c1.

A2 The relationship between undetermined coefficients
in eq. (12)

The system (Figure 2(a)) has the corresponding boundary
conditions,

Tc|r=rc
= Ts|r=rc

,

Ts|r=rs
= Tb|r=rs

,

κc
∂Tc

∂r

∣∣∣∣∣
r=rc

= κsrr
∂Ts

∂r

∣∣∣∣∣
r=rc

,

κsrr
∂Ts

∂r

∣∣∣∣∣
r=rs

= κb
∂Tb

∂r

∣∣∣∣∣
r=rs

.

(a8)

The substitution of eq. (12) into eq. (a8) yields
Acrc = Asr

ds1
c + Bsr

ds2
c ,

Asr
ds1
s + Bsr

ds2
s = Abrs + Bbr−1

s ,

κcAc = κsrr

(
ds1Asr

ds1−1
c + ds2Bsr

ds2−1
c

)
,

κsrr

(
ds1Asr

ds1−1
s + ds2Bsr

ds2−1
s

)
= κb

(
Ab − Bbr−2

s

)
.

(a9)

A3 Three-dimensional monolayer scheme with an
anisotropic thermal conductivity

The tensorial thermal conductivity of the shell can be ex-
pressed in the spherical coordinate system (r, θ, ϕ) as←→κ s =

diag
(
κsrr, κsθθ, κsϕϕ

)
. For simplicity, we assume a axial sym-

metry with κsθθ = κsϕϕ. Therefore, thermal conduction is in-
dependent of ϕ, which is dominated by

1
r2

∂

∂r

(
r2κsrr

∂T
∂r

)
+

1
r sin θ

∂

∂θ

(
sin θκsθθ

∂T
r∂θ

)
= 0. (a10)
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The temperature distributions in the core Tc , shell Ts, and
background Tb can be written as:

Tc = Acr cos θ,

Ts =
(
Asrhs1 + Bsrhs2

)
cos θ,

Tb =
(
Abr + Bbr−2

)
cos θ,

(a11)

with definitions of hs1 =
(
−1 +

√
1 + 8κsθθ/κsrr

)
/2 and hs2 =(

−1 −
√

1 + 8κsθθ/κsrr

)
/2. By substituting eq. (a11) into the

boundary conditions of eq. (a8), we can obtain
Acrc = Asr

hs1
c + Bsr

hs2
c ,

Asr
hs1
s + Bsr

hs2
s = Abrs + Bbr−2

s ,

κcAc = κsrr

(
hs1Asr

hs1−1
c + hs2Bsr

hs2−1
c

)
,

κsrr

(
hs1Asr

hs1−1
s + hs2Bsr

hs2−1
s

)
= κb

(
Ab − 2Bbr−3

s

)
.

(a12)

We can calculate Ac, As, Bs, and Bb with eq. (a12). By taking
Bb = 0, we can further derive

κb =
hs1 (κc − hs2κsrr) − hs2 (κc − hs1κsrr) f (hs1−hs2)/3

κc − hs2κsrr − (κc − hs1κsrr) f (hs1−hs2)/3 κsrr, (a13)

with a definition of f = r3
c/r

3
s . The concentrating efficiency

is

η =
Ac

Ab
=

(hs1 − hs2) κsrr f (hs1−1)/3

κc − hs2κsrr − (κc − hs1κsrr) f (hs1−hs2)/3 . (a14)

For an isotropic case with hs1 = 1 and hs2 = −2, eq. (a14)
can be simplified as:

η =
3κsrr

κc + 2κsrr − (κc − κsrr) f
, (a15)

which has the same form as eq. (7) in sect. 2.
We can also derive two coupling conditions for κc = κb,

hs1κsrr = κc, (a16)

hs2κsrr = κc. (a17)

Eqs. (a16) and (a17) can also be unified as:

2κsrrκsθθ − κcκsrr = κ
2
c . (a18)

When eq. (a18) is satisfied, eq. (a14) can be reduced to

η = f −(1−κc/κsrr)/3 = (rs/rc)1−κc/κsrr , (a19)

which has the same form as two dimensions (i.e., eq. (19)).
Therefore, the minimum value η → 0 occurs with κsrr/κc →
0+, and the maximum value η→ ∞ occurs with κsrr/κc → 0−.
Moreover, we can find η → rs/rc when κsrr/κc → ±∞. If
we consider an isotropic and nontrivial shell with κsrr/κc =

1/hs2 = −1/2, the concentrating efficiency becomes η =
r3

s /r
3
c , which also agrees with the three-dimensional conclu-

sion in sect. 2.
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