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Figure S1 to S9 

SI A: Finite element analysis simulation of scanning Microwave Impedance Microscopy 

signal 

To better understand the dependence of scanning microwave impedance microscopy (sMIM) 

signal on sample’s local conductivity, we perform a finite element analysis (FEA) simulation of 

the tip-sample admittance Y using a commercial software COMSOL. The sMM signal is 

proportional to such an admittance. For a two-dimensional thin film, we use a sheet resistance (Ω

/□) to represent its conductivity. In the simulation, we construct a tip-sample interface with some 

given material/geometric parameters. In particular, we set the radius of the tip as 50 nm, the 

thickness of V2O3 thin film as 300 nm, and the dielectric constant of V2O3 (Al2O3 substrate) as 4 

(9). We then vary the sheet resistance of V2O3 and calculate the corresponding tip-sample 

admittance in order to obtain a so-called sMIM response curve as shown in the Fig. S1. While the 

sMIM-Im signal decreases monotonically with the increasing sheet resistance, the sMIM-Re 

signal exhibits a peak as a function of the sheet resistance. Another important information from 

our simulation is the penetration depth of the sMIM signal into the V2O3 thin film. The inset of Fig. 

S1 shows the simulated quasi-static potential around the tip which can be used to estimate the 

penetration depth of the applied microwave signal. The simulation was done for a typical sheet 

resistance of 10
4
 . The microwave signal clearly penetrates into the whole 300 nm V2O3 thin 

film. In other words, it can sense the electric property of the whole film which makes sMIM very 

powerful as compared to other surface sensitive probes. Moreover, the lateral spatial resolution of 

sMIM is largely determined by the tip radius which is roughly 100 nm in our case. 

 

FIG S1 FEA simulation of the sMIM response curve and the quasi-static potential at the 

tip-sample interface. 

 

SI B: sMIM image data normalization 

The raw sMIM image data has a temperature dependent signal background. It will change 

with the temperature as the length of the microwave circuit components changes due to the 



thermal expansion. We perform the temperature dependent sMIM imaging in V2O3 to monitor its 

metal-insulator transition (MIT). To make the sMIM images taken at various temperatures directly 

comparable, this temperature dependent signal shift has to be compensated. In practice, we use a 

gold metal electrode as a temperature independent normalization reference. The sMIM signal will 

saturate at the gold electrode due to its very large conductivity, which thus doesn’t have a 

temperature dependence. For each raw sMIM image, we include the gold metal electrode in the 

scan field of view, and subtract sMIM signal on gold from signals taken on sample areas. After the 

subtraction, the normalized sMIM images are comparable as they share the same high limit and 

only reflect the relative change of conductivity between metallic and insulating phases. Figure S2 

(a) shows an optical image of our V2O3 device with the sMIM scan field of view marked by the 

red rectangle. Figure S2(b) and (c) are simultaneously taken AFM topography and sMIM-Im 

images at 164 K with the gold electrode on the left. The sMIM-Im signal has been normalized, so 

the gold electrode signal is 0 representing the most conductive part. The metallic phases in V2O3 

show almost the same signal level with the gold with a clear image contrast with the insulating 

phases. Please note that we don’t include the gold in sMIM images shown in the main text. 

 

FIG S2 (a) Optical image of V2O3 device with the lithographically defined meal electrodes. (b) 

AFM topography of the V2O3. (c) The normalized sMIM-Im image of the V2O3. Scale bar is 5 m. 

 

SI C: The irrelevance of topography to the electronic domain pattern 

To study the correlation between electronic domain pattern and the topography, we follow 

exactly the same procedure as was done in Ref. 16 of the main text to analyze our data. Figure S3 

show the topographic images taken at 200 K (far away from MIT) and 164 K (in the middle of 

MIT) on the same area, as well as a simultaneously taken sMIM image at 164 K showing a 

bi-directional striped domain pattern. By subtracting topography at 200 K from the one at 164 K, 

we obtain the difference in topographic height in Fig. S3(d) which doesn’t show the striped pattern 

as sMIM image in Fig. S3(b). Therefore, the topography is irrelevant to the electronic domain 

pattern revealed from the sMIM imaging. 



 

FIG S3 (a) The AFM topographic image of V2O3 taken at 164 K. Scale bar is 5 m. (b) 

Simultaneously taken sMIM image with Fig. S3(a). A bi-directional striped pattern can be seen. (b) 

The AFM topographic image from the same area as Fig. S3(a) taken at 200 K. (d) Difference in 

topographic height obtained by subtraction of panel (c) from panel (a). 

 

SI D: sMIM imaging of MIT on another sample area 

To demonstrate the repeatability of thermal hysteretic behavior in the domain evolution, we 

show sMIM imaging data taken on another sample area. Similar to Fig. 1(b), one sees a 

continuous domain growth procedure with percolating characters (Fig. S4(a)). A thermal 

hysteresis is directly resolved as well, i.e., one reaches the same metallic phase fraction at a higher 

temperature in the warming than that in the cooling. Figure S4(b) is the extracted metallic phase 

fraction as a function of the temperature  p T . Such  p T  shows a slope change when p

50% signaling a percolation process. In addition, the thermal hysteresis of  p T  is larger at 

lower temperatures and shrinks at higher temperatures reconfirming an important observation we 

have in the main text, i.e., cooling and warming represent two different percolating processes. 

 

FIG S4 (a) Temperature dependent sMIM images for a cooling and warming cycle of MIT. Scale 



bar is 5 m.. (b) Temperature dependent metallic phase fraction. 

 

SI E: Domain identification and growth simulation 

To reveal the difference in domain growth between cooling and warming, we take a closer 

look at sMIM images. Figure S5(a) and (d) show sMIM images of cooling (173 K) and warming 

(164 K) process, respectively. They are chosen because they possess a similar minority phase area 

fraction. However, the minority phase (metallic phase) of warming looks much more fragmented 

than that (insulating phase) of cooling. In other words, the averaged domain size of the metallic 

phase in the warming is smaller than that of insulating phase in the cooling. To better quantify this 

contrasting behavior, we apply an algorism to identify the domains and/or nucleation sites in the 

sMIM image. Such determination is straightforward. We first binarize every pixel of the image to 

be either “metallic” or “insulating”. Then we look for a cluster of interconnected image pixels of 

the minority phase, which is metallic (insulating) phase for warming (cooling). Such a cluster has 

to be enclosed by the majority phase, then is counted as one domain and/or nucleation site. The 

actual pixel number in one such cluster can vary from one to many depending on the size of the 

cluster. However, there is an uncertainty of this domain identification mainly from the image pixel 

binarization, scanning spike noise or topographic artifacts. We adopt two ways to mitigate such an 

uncertainty in our algorism. First, we set a lower bound of the cluster size. For example, we throw 

out cluster that has only one pixel which is strongly influenced by the factors mentioned above. 

We can also raise the bound to 2, 3 or 4 pixels. Second, we require that all the identified domain 

and/or nucleation sites should be in a “growth mode”. For that purpose, we carefully compare the 

minority phase domain positions in two consecutive sMIM images in the warming and cooling by 

overlapping them. Figure S5 (b) and (e) show overlapped 173 K and 170 K (164 K and 167 K) 

images for the cooling (warming). Take warming (Fig. S5(e)) as an example. In such an 

overlapped image, white areas are the insulating phases existing in both temperatures. Black areas 

correspond to positions identified as metallic domains in both temperatures. The blue areas are 

metallic phases lost at higher temperature (they only exist at 164 K, but disappear at 167 K). Now 

we only keep the domains in the “growth mode” and throw out ones that are not, i.e., we only 

count the metallic domains that have an overlap with its counterparts at higher temperatures and 

remove the ones that disappear at higher temperatures. One can see from Fig. S5(e) that most of 

such left domains (black) indeed expand into larger ones (red) at higher temperatures. The same 

criterion applies to cooling as well. Figure S5 (c) and (f) show the positions of the identified 

domains and/or nucleation sites for the cooling and warming, respectively. After all the domains 

and/or nucleation sites are determined, we get the number for each sMIM image with a certain 

minority phase area fraction. We plot such number versus area fraction in Fig. 4(a) of the main 

text. The error bar shown in Fig. 4(a) of the main text comes from the different lower bounds of 

domain size we tried in the algorism from 2 to 5. The overall behavior indicates that one has more 

domains and/or nucleation sites in the warming than that of cooling at the beginning of domain 

growth. 

 



 

FIG S5 (a) sMIM images at 173 K of cooling. (b) overlapped sMIM images at 173 K and 170 K of 

cooling. (c) domain position identification for cooling. (d) sMIM images at 164 K of warming. (e) 

overlapped sMIM images at 164 K and 167 K of warming. (f) domain position identification for 

warming. 

 

We apply a random-resistor network model to simulate the domain growth as well as 

calculate the macroscopic conductance of the system. In particular, we adopt a site percolation 

model in a two-dimensional square lattice as shown in Fig. S6 in which it has two structural 

elements, a site and a bond. Note that in our simulation, we consider the phase competition of two 

phases at each spatial location. In other words, the minority phase domain growth happens as a net 

result of area gained and lost. We get a glimpse of this behavior from Fig. S5(b)(e). To simulate 

the domain growth (take warming as an example) in such a square lattice model, we adopt a 

procedure derived from a nearest-neighbor bond correlation model[1]. We use a random 

normalized value r, which is between 0 and 1, to reflect the metallicity of a bond and a site. To 

start the simulation, we randomly pick n grid sites representing the nucleation site. These sites are 

assigned the value 1. Then two site numbers associated with a bond were averaged resulting in a 

new set of value r'. Then every bond was assigned the corresponding value r'. Next, the four bond 

numbers associated with a particular site were averaged resulting in a new set of value r''. Every 

site was assigned the corresponding value r''. This process can be iterated many times. It can make 

all the nodes around a node of large value grow. Therefore, it can be used to simulate domain 

growth process. We define the following rules of value assignment: every site was assigned the 

value r=0.25*(r1+r2+r3+r4) and every bond was assigned the value r=p*(r1+r2) where the 

coefficient p is chosen 0.55 for simulating the metallic domain growth and 0.45 for the metallic 

domain lost. To guarantee the net metallic domain growth as seen in the experiment, the 

probability of bond value assignment choosing p=0.55 (p=0.45) is 53% (47%) among all the 

bonds at each step of the simulation. 

 



 

FIG S6 The schematic of nearest-neighbor bond correlation model. 

 

We choose 1000  1000 square lattice. Periodic boundary conditions are imposed by 

connecting pairs of grid points on the opposite free edges. As described above, we randomly pick 

n nucleation site and let the procedure flow. Figure S6 gives an example of value assignment to 

the bond and site in the model and new values generated in next step. We iterate the procedure 

1000 times after which the “minority phase” reaches 100%. In each step, we identify the site 

whose r value is larger (smaller) than 0.5 to be metallic (insulating) so as to get the metallic phase 

fraction. We also note that, the initially chosen nucleation site number n is critical to the observed 

difference between warming and cooling. Fig. S7 lists four examples of the simulated metallic 

phase fraction versus simulation steps with different number ratio of initial nucleation site 

between warming and cooling. When such number is the same, the simulated curves are 

symmetric in the sense that they overlap after a lateral shift in steps. Increasing the number ratio 

results in an increasing asymmetry of the line shape, i.e., the curves cannot overlap each other 

after a lateral shift. We choose 5:1 to generate the simulation shown in Fig. 4(b) in the main text. 

 

 

FIG S7 (a-d) Metallic phase fraction as a function of simulation steps under different number 

ratios of initial nucleation site between warming and cooling. 

 

SI F: Global conductance calculation from random-resistor network model 



Given the simulated domain configuration, we can calculate the macroscopic conductance of 

such random-resistor network model. Figure S8 shows a schematic of the model. Each site i (i = 

1,2,….N) of the lattice is selected as metallic (insulating) as denoted by a filled orange (blue) 

circle in Fig. S8. Such assignment directly comes from our simulated domain configuration. The 

conductance of a bond ijG  that connects site i to site j is determined as the followings: 1) if both 

sites of a bond are insulating, ij iG G ; 2) if both sites of a bond are metallic, ij mG G ; 3) if a 

bond connects a metallic site to an insulating site,  2 /ij i m i mG GG G G  . Here 
iG  and 

mG  

are the conductance of metallic and insulating phases during the MIT. We approximate the 

conductance 1mG   and 0.001iG   as a constant value. We also include a source and a sink 

in the lattice model as denoted by the filled green and red circle in Fig. S8. They are connected to 

the left and right side of the lattice mimicking the electrode contacts in real transport measurement. 

We rely on the Kirchhoff’s equations to calculate the effective conductance of such resistor 

network. Kirchhoff’s first law leads to the following constraint 
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Here V and I are N-vectors whose components are Vi and Ii , respectively. Knowing I as the 

boundary condition (a certain amount of current flows from the source to the sink), it is easy to get 

V by dividing I by L. However, L is a singular matrix due to the fact that the zero point of electric 

potential is not unique which makes the above equation have an infinite number of solutions. To 

solve this issue, we assign 0NV  . Therefore, L can be reduced to 
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Now L is not a singular matrix. By solving the Kirchhoff’s equations listed above, one can get the 

effective conductance of the random-resistor network. 



 

FIG S8 The schematic of our random-resistor network model. 

 

SI G: Comparison of domain distribution above the percolation threshold 

To understand the conductance difference between cooling and warming with the same 

metallic phase fraction, namely the thermal hysteresis in  G p , in the regime above the 

percolation threshold, we compare sMIM images of cooling and warming with p 80% as 

shown below in Fig. S9. The extracted averaged sMIM signal level of metallic (insulating) phases 

is -13 (-32) mV for the cooling and -12 (-31) mV for the warming meaning the actual mesoscopic 

conductance of the metallic (insulating) phases vary little between cooling and warming. However, 

the spatial domain configuration differs. The insulating domain distribution, now as a barrier to 

the current flow, is more fragmented in the cooling than that of the warming. It may explain why 

cooling is more conductive than warming even under the same metallic phase fraction because the 

electric current has a better chance in the cooling to go around the insulating barrier. In other 

words, the thermal hysteresis in  G p  above the percolation threshold is largely due to the 

different domain configurations. This experiment also demonstrates the importance of knowing 

actual spatial domain configuration for understanding the global transport behavior. 

 

FIG S9 (a) Global conductance versus the metallic phase fraction. (b) sMIM image taken at 173 K 

in the cooling. Scale bar is 5 m. (c) sMIM image taken at 173 K in the warming. 
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