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Heat energy can transfer via convection, conduction, and radiation. Based on convection and conduction in microfluidics, people
have designed and fabricated many novel devices. However, almost none of them has adaptivity, thus restricting practical ap-
plications under different conditions. To solve this problem, here we propose a passive approach to adaptive responses. That is,
we consider the thermal convection-conduction process in microfluidic structures where Darcy’s law and Fourier’s law are both
valid. By carefully designing two key parameters (i.e., tensorial thermal conductivity and tensorial permeability) of a metashell,
we theoretically reveal that its effective properties (i.e., effective thermal conductivity and effective permeability) can adaptively
change according to the inside object, thus yielding the “chameleonlike metashell”. Further, this metashell is passive since it
requires no prior knowledge of the inside object. We also report that the chameleonlike behavior can occur for anisotropic inside
objects, nonuniform external fields, or even complex shapes. All theoretical analyses agree well with finite-element simulations.
The chameleonlike metashell can act as an intelligent metamaterial in microfluidics for its adaptive responses, and it can also
benefit other physical fields where convection plays a role, such as mass diffusion.
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1 Introduction

Microfluidic structures have aroused wide research interest
for their potential applications in chemistry, biology, optics,
and information technology [1-8]. Recently, with the increas-
ing focus on energy issues, researchers have turned their at-
tention to heat management in microfluidic structures. The
related mechanisms are mainly convection and conduction
because radiation becomes insignificant in such cases.

Since the theory of transformation thermotics [9] was es-
tablished in 2008, the ability of heat management has been
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largely improved. Many novel phenomena have been re-
vealed with thermal metamaterials, such as thermal cloaks
[9-17], thermal transparency [18-21], thermal bending
[22-25], thermal camouflage/illusion [26-35], thermal Janus
structures [36], thermal “golden touch” [37]. For fluid con-
vection, a transformation theory was also established to con-
trol the fluid flow in porous media [38]. Recently, some
work [39-41] considered the coupling between thermal con-
duction and fluid convection, even in transient regimes, thus
yielding the concept of thermal cloak with fluid convection.
These developments inspire us to explore more on metama-
terials in microfluidic structures.

Although the existing achievements are exciting, a severe
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problem is that these metamaterials exhibit almost no adap-
tivity, thus restricting applications under different conditions.
With higher requirements of metamaterials, intelligence be-
comes one of the developing trends. Namely, metamaterials
are expected to possess adaptivity to meet different require-
ments under different conditions, which can be called intelli-
gent metamaterials.

To solve this problem, here we propose a passive approach
which, however, can achieve adaptive responses. Concretely
speaking, we design a metashell which can change its ef-
fective properties (i.e., effective thermal conductivity and ef-
fective permeability) adaptively according to different inside
objects. Here, “passive” means that any prior knowledge
of the inside object is not required; “metashell” indicates a
manually-designed shell; and “inside object” can be regarded
as a core surrounded by the metashell. This behavior is, to
some extent, similar to chameleons whose colors can change
adaptively according to different environments, and thus the
metashell is also called “chameleonlike metashell” [42-44].
The potential application is to work as an all-purpose mate-
rial. For example, materials are expected to be insulated to re-
alize thermal protection, whereas they are expected to be con-
ductive for heat dissipation. The chameleonlike metashell,
due to its adaptive responses, may be an excellent candidate.

For thermal convection-conduction process in microfluidic
structures (which are composed of porous media and incom-
pressible fluid in this work), thermal conductivity and per-
meability are two key parameters. We carefully design the
metashell and find a special condition to make its effective
properties always equal to those of the inside object. Hence,
adaptive responses are achieved. Then, we perform finite-
element simulations to confirm the theoretical analyses. In
what follows, let us start by presenting the theory.

2 Theory for chameleonlike metashells

In microfluidic structures, the passive thermal convection-
conduction equation for steady states can be expressed as
[40, 41]:

ρfCf (v · ∇T ) + ∇ · j = 0, (1)

where ρf and Cf represent the density and heat capacity of the
fluid, respectively. T denotes the equilibrium temperature of
the porous media and the fluid at the contact point. The fluid
velocity v and the conductive flux j are, respectively, given
by Darcy’s law and Fourier’s law,

v = − (σ/β) · ∇P, (2)

j = −κ · ∇T, (3)

where σ is the tensorial permeability of the porous me-
dia, and β is the dynamic viscosity of the fluid. P de-
notes pressure. κ is the average tensorial thermal conduc-
tivity of the porous media plus the fluid which is given by
κ = (1 − ϕ) κs + ϕκf, where κs and ϕ are, respectively, the
tensorial thermal conductivity and the porosity of the porous
media, and κf is the thermal conductivity of the fluid. For
a passive process, the fluid velocity v is always divergence-
free [40,41], and we suppose that the conductive flux j is also
divergence-free for the convenience of discussion,

∇ · v = 0, (4)

∇ · j = 0. (5)

Further, since there is only one type of fluid in our cases, β
becomes a constant which can be ignored in eq. (4). Then,
eqs. (4) and (5) can be unified as:

∇ · (−ω∇Ω) = 0, (6)

where ω = σ or κ, and Ω = P or T . In what follows, the dis-
cussion of σ and κ will be unified to that of ω because they
follow the same dominant equation (eq. (6)).

Now, we consider the system as described in Figure 1(a).
The scalar parameters of region I (ω1) and region III (ω3) are
the same (ω1 = ω3), and the tensorial parameter of region II
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Figure 1 (Color online) Concept of the chameleonlike metashell. (a) A
schematic diagram of the research system; (b) the theoretical performance
of the chameleonlike metashell.
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(the chameleonlike metashell, ω = diag (ωrr, ωθθ)) is writ-
ten in cylindrical coordinates. The effective scalar parameter
of region I plus region II (denoted by ωe) can be calculated
by [37]

ωe = cωrr
ω1 + cωrr + (ω1 − cωrr) f c

ω1 + cωrr − (ω1 − cωrr) f c , (7)

where f = (r1/r2)2 is the core fraction, and c =
√
ωθθ/ωrr

represents the anisotropy degree. Eq. (7) is a standard result
for calculating the effective thermal conductivity [37]. Since
permeability follows the exactly same dominant equation as
thermal conductivity, eq. (7) can also explain the effective
permeability.

The chameleonlike metashell features the same property
as the inside object, which can be mathematically defined as:

ω = ω1, (8)

where ω is the effective scalar parameter with respect to the
tensorial one (ω). Since the effective scalar parameters of re-
gion I and region II are both ω1, the effective parameter of
region I plus region II has the only possibility to be

ωe = ω1. (9)

Throughout the process, we do not restrict the value of ω1,
and hence the ideal chameleonlike metashell is characterized
by ωe/ω1 = 1.

In all cases, the exact realization of eq. (9) is impossible.
In spite of this difficulty, we find a special condition for the
metashell to make eq. (9) approximately valid, say,

ωθθ ≪ ω1 ≪ ωrr. (10)

Then, we discuss the role of eq. (10). First, it gives
ωθθ/ωrr → 0, indicating c → 0 and f c ≈ 1 + c ln f , and
thus eq. (7) can be reduced to

ωe ≈ cωrr
ω1 + cωrr + (ω1 − cωrr) (1 + c ln f )
ω1 + cωrr − (ω1 − cωrr) (1 + c ln f )

= ωrr
2ω1 − ωθθ ln f
2ωrr − ω1 ln f

. (11)

Second, it indicates thatωθθ (orω1) can be regarded as a small
quantity with respect to ω1 (or ωrr), and thus eq. (11) can be
further simplified as:

ωe ≈ ω1. (12)

In the whole process, we just suppose a variation range for
ω1 given by eq. (10), rather than a concrete value. Therefore,
eq. (12) can be also expressed as ωe/ω1 ≈ 1, which is the
result that we expect to achieve.

So far, the mechanism of the chameleonlike metashell
has been theoretically uncovered (eq. (10)). It is an ap-
proximate result, so we need to use practical parameters
to check the performance of the chameleonlike metashell.
We set the tensorial thermal conductivity and the ten-
sorial permeability of the chameleonlike metashell to be
κ = diag (1500, 0.6) W m−1 K−1 and σ = diag (50, 0.02) ×
10−12 m2, respectively. The two parameters are both charac-
terized by a large radial component and a small tangential
component as required by eq. (10). Throughout this work,
κ (or κ) is always the average tensorial (or scalar) thermal
conductivity of the porous media plus the fluid. Therefore,
the thermal conductivity of the porous media κs is given by
κs = (κ − ϕκf) / (1 − ϕ). Then, we plot the ωe/ω1 curve
changing with ω1 according to eq. (7); see Figure 1(b). We
find that the relative error ∆ = (ωe − ω1) /ω1 is below 5%
when κ1 ranging from 5.44 to 100 W m−1 K−1, and σ1 rang-
ing from 1.8 × 10−13 to 5 × 10−12 m2. The results indicate
that the chameleonlike metashell can work in a wide range.
Despite of the good performance, the requirement is that ωrr

should be about four orders of magnitude bigger than ωθθ.

3 Simulations for chameleonlike metashells

To validate the theoretical analyses, we further per-
form finite-element simulations for steady states based
on the commercial software COMSOL MULTIPHYSICS
(http://www.comsol.com/); see Figures 2-5. In all sim-
ulations, the parameters of the chameleonlike metashell
and the normal shell are kept unchanged; say, κ =

diag (1500, 0.6) W m−1 K−1, σ = diag (50, 0.02) × 10−12 m2

for the chameleonlike metashell, and κ = 30 W m−1 K−1,
σ = 10−12 m2 for the normal shell. The parameters of re-
gions I and III are kept the same except for additional state-
ment. For case 1: κ = 6 W m−1 K−1 and σ = 5 × 10−12 m2;
for case 2: κ = [(30, −15) , (−15, 30)] W m−1 K−1 and σ =
[(1, 0.5) , (0.5, 1)] × 10−12 m2 (which are written in Carte-
sian coordinates); and for case 3: κ = 60 W m−1 K−1 and
σ = 5 × 10−13 m2, which are all in the range of 5% rel-
ative error as shown in Figure 1(b). The porosity of the
porous media in regions I, II, and III is ϕ = 0.8. The
fluid in regions I, II, and III is water whose parameters are
ρf = 103 kg m−3, Cf = 4.2×103 J kg−1 K−1, β = 10−3 Pa s, and
κf = 0.6 W m−1 K−1. The size parameters are r1 = 2×10−5 m,
r2 = 3.2 × 10−5 m, and d0 = 10−4 m. The temperature dif-
ference and the pressure difference are set to ∆T = 40 K and
∆P = 200 Pa except for Figure 5. Although eq. (7) itself
does not restrict the size of the chameleonlike metashell, cer-
tain restrictions should be satisfied to ensure the validity of
Darcy’s law. Namely, the designed parameters lead to the

http://www.comsol.com/
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Reynolds number Re = vr2ρf/β ≪ 10 (linear laminar flow
region) and σ ≪ r2

2, which make Darcy’s law valid.
Then, we explain the finite-element simulations in

Figures 2-5 in detail. The complete information of the ther-
mal convection-conductive process can be reflected by the
scalar fields; say, the temperature distributions and the pres-
sure distributions. Therefore, we plot both temperature dis-
tributions and pressure distributions in what follows.

Figure 2 demonstrates the adaptive responses of the
chameleonlike metashell from an isotropic case to an
anisotropic case. When the chameleonlike metashell is
placed in case 1 (Figure 2(a) and (b)), it can adaptively
change its effective properties (i.e., effective thermal conduc-
tivity and effective permeability) to adapt to the inside object.
As a result, the scalar fields outside the metashell is the same
as those outside the comparative shell; see Figure 2(i) and (j).
However, the normal shell fails to change adaptively which
results in the different scalar fields outside the shells; see
Figure 2(e) and (f). Then, we put the chameleon-
like metashell in case 2 with anisotropic parameters; see
Figure 2(c) and (d). Again, the chameleonlike metashell
changes with the inside anisotropic object, and exhibits the
same scalar fields as those outside the comparative shell; see
Figure 2(k) and (l). By contrast, the normal shell still fails to
change adaptively; see Figure 2(g) and (h). Here, the diver-
gence of the conductive flux is not zero, but eq. (7) still works
and yields the chameleonlike behavior. This results from that
divergency-free (eq. (5)) is not a requirement because the ef-
fective thermal conductivity (eq. (7)) is independent of the
divergency of the conductive flux.

The finite-element simulations in Figure 2 are performed

κ

σ

κ σ

Figure 2 (Color online) Finite-element simulations for the chameleonlike
metashell. White lines represent contour lines. Different cases only represent
different parameters of regions I and III. Chameleonlike metashell, normal
shell, and comparative shell are placed in the first, second, and third rows,
respectively. The external fields are uniform along x axis. Case 1 is isotropic,
whereas case 2 is anisotropic. The comparative shell in the third row is rep-
resented by dashed lines because it is essentially the same as regions I and
III.

with uniform external fields along x axis. Then, we change
only the direction of the pressure field along y axis, and put
the chameleonlike metashell in case 1; see Figure 3(a) and
(b). We also set a hot source in the top-left corner and a high
pressure in the bottom-right corner to generate nonuniform
fields, and put the chameleonlike metashell in case 3; see
Figure 3(c) and (d). The same scalar fields outside the shells
between Figure 3(a), (b), (i), and (j) (or Figure 3(c), (d), (k),
and (l)) indicate that the chameleonlike metashell does work
for different external fields. However, the normal shell fails;
see Figure 3(e), (f), (g), and (h). For clarity of Figure 3(g) and
(h), we can compare the contour lines near the shells; say, the
first and forth contour lines from the right-bottom corner of
Figure 3(g) and (k), and the first and forth contour lines from
the left-top corner of Figure 3(h) and (l). The chameleonlike
behavior still occurs for nonuniform external fields because
eq. (7) is valid without the requirement of external fields.

Further, we check whether the shape of the chameleon-
like metashell will affect the adaptive behavior. We change
the shape of the chameleonlike metashell into a square, and
put it in case 1; see Figure 4(a) and (b). We also design a
more complex shape, and put it in case 3; see Figure 4(c) and
(d). By comparing the scalar fields outside the shells between
Figure 4(a), (b), (i), and (j) (or Figure 4(c), (d), (k), and (l)),
we find that the adaptive behavior still exists for different
shapes. Meanwhile, the normal shell fails; see Figure 4(e),
(f), (g), and (h). For clarity of Figure 4(g) and (h), we can
compare the second and penultimate contour lines from the
left side between Figure 4(g) and (k) (or Figure 4(h) and (l)).

Finally, we consider two cases with temperature differ-
ence ∆T = 20 K and pressure difference ∆P = 400 Pa; see
Figure 5. The other parameters of the left two columns in

κ

σ

Figure 3 (Color online) Finite-element simulations with different external
fields. The pressure field in the second column is along y axis. The tempera-
ture field in the third column is nonuniform, and the cold source is set at the
bottom and right boundaries. The pressure field in the forth column is also
nonuniform, and the low pressure is set at the top and left boundaries. Other
boundaries are set with insulation and no flow conditions.
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κ

σ

Figure 4 (Color online) Finite-element simulations with different shapes.
The widths of the inner and outer square in the left two columns are
3.2 × 10−5 and 5.12 × 10−5 m, respectively. The inner parametric line in the
right two columns is x = 2 × 10−6 [10 + cos θ − cos (2θ) + 2 sin (5θ)] cos θ,
y = (10/7) × 10−6 [10 + cos θ − cos (2θ) + 2 sin (5θ)] sin θ, θ ∈ [0, 2π). The
outer one is 1.6 times as big as the inner one.

κ

σ

Figure 5 (Color online) Finite-element simulations with different temper-
ature and pressure differences. The parameters of regions I and III in the left
two columns are the same; say case 1. The parameters of regions I and III
in the right two columns are different, and the parameters of the comparative
shell is set to be the same as those of region I.

Figure 5 are the same as those for case 1 in Figure 2. Cer-
tainly, the chameleonlike behavior still occurs because eq. (7)
is valid without the requirement of external fields; see the left
two columns of Figure 5. Moreover, it is just for convenience
to set the parameters of region III to be the same as those of
region I. In fact, whatever the parameters of region III are,
the chameleonlike metashell can always imitate the proper-
ties of the inside object. Thus, we set the parameters of re-
gions I and III to be different in the right two columns in
Figure 5; say κ = 3 W m−1 K−1 and σ = 10−11 m2 for re-
gion I, and κ = 6 W m−1 K−1 and σ = 5 × 10−12 m2 for
region III. The same temperature and pressure profiles out-
side the metashell and the comparative shell indicate that the

chameleonlike metashell can always imitate the properties of
the inside object; see Figure 5(c), (d), (k), and (l). However,
the normal shell always fails; see Figure 5(g) and (h).

So far, we have shown the robustness of the chameleon-
like metashell under more complicated conditions; say, for
anisotropic cores, nonuniform external fields, and complex
shapes. These results help to conclude that as required by
eq. (10), eq. (12) still holds regardless of such complicated
conditions.

4 Discussion and conclusion

For the experimental realization of the chameleonlike
metashell, the key is to realize a large radial component
and a small tangential component of the tensorial thermal
conductivity (or the tensorial permeability) as required by
eq. (10). A reliable method is to design a fan-shaped layer
structure [45, 46] with two distinct materials whose thermal
conductivities (or permeabilities) should differ up to four or-
ders of magnitude. We design the layer structures with two
isotropic materials presented in Figure 6(a)-(c), whose effec-
tive radial and tangential properties are respectively given by

ωrr =
aωA + bωB

a + b
, (13)

ωθθ =
a + b

a/ωA + b/ωB
, (14)

where a, ωA and b, ωB are flare angles, material parameters
corresponding to the blue material and the brown material, re-
spectively. For finite-element simulations, we set a = b = 2◦,
κA = 3000 W m−1 K−1, σA = 10−14 m2 for the blue mate-
rial, and κB = 0.3 W m−1 K−1, σB = 10−10 m2 for the brown
material. κA and κB are also the average thermal conduc-
tivities of the porous media plus the fluid. The porosity of
the two materials are both ϕ = 0.2. These parameters help
to approximately realize κ = diag (1500, 0.6) W m−1 K−1

and σ = diag (50, 0.02) × 10−12 m2 for the chameleonlike
shell shown in Figures 2-4. The structures presented in
Figure 6(a)-(c) are applied in Figure 6(a1)-(a8), Figure 6(b1),
(b2), and (c1), (c2), respectively. The second, third, and
forth rows in Figure 6 correspond to the first rows in Fig-
ures 2-4, respectively. The corresponding same tempera-
ture distributions and pressure distributions validate the fea-
sibility of the layer structures. Next, we look for practi-
cal systems to realize the chameleonlike metashell. We find
that carbon nanotube may be a potential candidate. On one
hand, the water transport in it has been widely studied [1-8].
On the other hand, carbon nanotube has high thermal con-
ductivity up to 3000 W m−1 K−1. Moreover, aerogel may
be another candidate which has low thermal conductivity
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about 0.03 W m−1 K−1. The permeabilities may be adjusted
by filling the carbon nanotube and aerogel.

Nevertheless, we only consider the thermal convection-
conduction process in steady states, and the chameleonlike
metashell is well-behaved. Certainly, the chameleonlike
metashell in transient states can be expected as well, if we
take the density and heat capacity into account [41]

ρC
∂T
∂t
+ ρfCf (v · ∇T ) + ∇ · j = 0, (15)

where ρC is given by ρC = (1 − ϕ) ρsCs + ϕρfCf. Here, ρs

and Cs denote the density and heat capacity of the porous
media, respectively. We take the left two columns in Fig-
ure 2 as an example. The results for time t = 0.001 s and
t = 0.002 s are presented in the left two columns and the
right two columns in Figure 7, respectively. The density and
heat capacity of the porous media in regions I, II, and III are
ρs = 5 × 102 kg m−3 and Cs = 5 × 102 J kg−1 K−1. The initial
temperature and pressure are 293 K and 0 Pa, respectively.
The scalar fields outside the chameleonlike metashell and the
comparative shell are approximately the same, which illus-
trates that the chameleonlike metashell also works in tran-
sient regime. It takes about 0.006 s to reach the steady states,
and the results are just the left two columns in Figure 2.
Compared with the thermal field, the pressure field is estab-
lished instantaneously because there is almost no difference
between the pressure fields at t = 0.001 s and t = 0.002 s.

Figure 6 (Color online) Finite-element simulations with isotropic mate-
rials and layer structures. The first row exhibits three layer structures with
two isotropic materials to realize the parameters for the chameleonlike shell
shown in Figures 2-4. Except for the chameleonlike metashell, the other pa-
rameters of the second, third, and forth rows are the same as those of the first
rows in Figures 2-4.

κ

σ

Figure 7 (Color online) Finite-element simulations in transient regime
(dominated by eq. (15)). All the parameters are the same as those of the left
two columns in Figure 2.

The premises of this work are the validations of eqs. (4)
and (5). If the Reynolds number is very large, Darcy’s law
is no longer solid, and the Brinkman-Stokes flow and turbu-
lent flow should be considered [47-49]. If the phonon ef-
fect is taken into consideration [50-53], Fourier’s law may be
also invalid. Also, radiation is ignored in this work because
it is unimportant compared with convection and conduction.
However, in some specific cases, radiation may play a key
role in heat transfer [54, 55].

In summary, we have proposed the concept of chameleon-
like metashells in microfluidics, which is passive, but can
exhibit adaptive responses to the inside object. Theoretical
analyses and finite-element simulations both validate the pro-
posed scheme. This work can be helpful to explore more in-
telligent metamaterials in microfluidics, to design all-purpose
materials, to camouflage the size of inside objects, and to ef-
fectively control thermal convection-conduction processes.

This work was supported by the National Natural Science Foundation of
China (Grant No. 11725521).
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