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ABSTRACT

Understanding internal vortex breakdowns (VBs) and their trajectories in sealed cylinders are important for the scientific and industrial
applications with which they are linked. However, the fluids in sealed cylinders are often sheared, which makes it difficult to clearly and
multidirectionally observe their internal flow patterns simultaneously with existing experimental tools; this results in some important
features not being captured. In this work, we performed thousands of numerical simulations in a sealed cylinder utilizing the finite element
approach. Abundant internal VB patterns were obtained for different aspect ratios as the Reynolds number (Re) increased. To further
quantitatively study the morphological evolution of VBs, we focused on the axial lengths and trajectories of VBs with multiple aspect ratios.
Surprisingly, the numbers of VBs in the rotating fluid were not fixed for the same aspect ratio, which also affected the complexity of the VB
evolution. In particular, the stair-step changes of the locations of the VB and local extrema of the axial velocity, pressure, and vorticity of the
key flows at the axis were revealed in detail. We used the theory of swirl decay to explain the VB formation and stair-step change from an
energy perspective and clarified why the pressure minimum was under the center of the VB. The discovery of the stair-step change of the VB
provided evidence of the existence of a new class of fluid behavior that may provide insight into vortex control.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0107296

I. INTRODUCTION

Fluid, existing everywhere, has a close relationship with
human life and production, so it is of particular importance to
study and control fluid flow.1–6 Together with the rapid develop-
ment of engineering and thermal energy control,7–13 vortex
research has gradually become a powerful tool for fluid control,
which began from the unexpected reverse flow that occurs in the
center of a pipe.1 In general, vortex research can be used to reveal
new fluid behaviors and develop new applications. Until now, a
large number of studies have been conducted on fluid structures,
behaviors, and mechanisms,1–3,14–42 vortex-induced diffusion,
fusion and reaction,7,43–47 and industrial applications.48–51

Recently, researchers have shown an increased interest in vortex
study, especially vortex breakdown (VB).6,7,14–16,30,32,33,35–39,41,45,46,51–59

The topologies of VB were thought to be too unstable to actually
occur.41 The design of a pappus stabilized one separate vortex ring (also
called VB) at 60% of the terminal velocity.7 However, a continuum

description that captures the important features of multiple VBs, such
as the morphology and propagation characteristics under complex con-
ditions, is not yet at hand. This issue in rotating fluids may be addressed
by the study of flows in sealed cylinders.14,15,19,22,25,42 Lid-driven cyl-
inders are internal flow type cylinders with simple geometry and
complex flow nature.31 Although the system in this geometry is fully
three-dimensional, the invariance of the equations and boundary
conditions to arbitrary rotations in the azimuthal direction naturally
provides a periodic direction that can be efficiently exploited in the
solution scheme. This simple geometry and absence of ambient dis-
turbances allow both experimental and numerical studies to be con-
ducted to help understand vortex dynamics. 37 Escudier17 carried
out the most detailed experimental study of rotating flows in a sealed
cylinder by employing a laser-induced fluorescence technique. He
found that three axisymmetric distinct breakdown bubbles can occur
with different values of the model parameters, the aspect ratio, and
the Reynolds number (Re).
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To date, traditional investigations of vortices in experiments tend
to observe a single axisymmetric profile, and it is difficult to observe
the radial section simultaneously due to the limitations of instruments.
At the same time, the dye filament can be confused with the vortex
core, which leads to inaccurate low interior velocities. Rotating flow
phenomena only observed from a single profile often do not match
expectations and intuition, and more detailed modeling is needed.
Numerical simulations have been validated against experimental visu-
alizations of both transient and stable-period flows.18 Dynamical sys-
tems and bifurcation theory have been used to clarify the transition
scenario of the vortex dynamics. Xiao30 studied the phenomenon of
VB in an enclosed sealed cylinder by numerical simulation methods
and explained the VB in the sealed cylinder with energy gradient the-
ory. They used the energy gradient function K to explain the phenom-
enon of VB and found that the position of the local peak value of the
energy gradient function K at the centerline was the first location
where the flow lost its stability and subsequently caused a VB bubble.
Carri�on et al.38 focused on the VB disappearance and explained the
geometry of a cell of counter circulation—a vortex breakdown bubble
(VBB) region. They explained that the convergence of the swirling
flow to the axis reduced the pressure above the center of the stationary
disk. Suction caused by the reduced pressure creates a VBB and
attracts it closer to the disk. A VB emerges when the local minimum
of the axial velocity at the rotating axis becomes negative. Recently,
dynamic evolution of the position of the vortex structures was studied
in plasma flow.36 The induced velocity peak value and profile velocity
height were analyzed to determine which plasma actuator has the
strongest temporal aerodynamic efficiency. The physical properties of
rotating flows are crucially dependent on their internal vortex
structures.

However, due to the limitations of experimental technology, such
as the velocity of the VB center being too small to be precisely mea-
sured and the vortex center being confused with the dye filament, lead-
ing to inaccurate low interior velocities, there are some unresolved
problems: (1) quantitative study of the morphologies and trajectories
of VBs has not been conducted; (2) how the aspect ratios and the
Reynolds number (Re) affect the evolution of the VB morphology and
propagation has rarely been discussed; (3) the reason that the pressure
minimum and the center of VB do not coincide but are below the VB
has not been determined.

In this work, we modeled the vortex pattern and trajectories of
rotating water induced by a rotating lid in a closed sealed cylinder with
the finite element method. We performed over 1900 simulations for
four aspect ratios, k¼ 1.5, 2.0, 2.5, and 3.3. We studied the axial length
and propagation of VBs, and how one, two, and three VBs emerged,
expanded, split, merged, shrank, and disappeared for four different
aspect ratios as Re increased. Key related physical quantities, the veloc-
ity, pressure, and vorticity patterns, in the axisymmetric profile and
the radial profile were investigated. Swirl theory was used to explain
and analyze the mechanism of VB formation and propagation and
uncover other as yet unknown fluid behaviors.

II. METHODS AND THEORY

The numerical technique of our study of rotating flow is similar
to that used in our previous study.25 Several software packages are
available for vortex analysis and simulation in rotating flows. Among
these packages, COMSOL Multiphysics is advantageous because of its

particular adaptability and compatibility when adding physics to an
existing model. Moreover, COMSOL Multiphysics provides a com-
plete and integrated environment for physics modeling and simulation
as well as application design. This software is used to study vortices in
axisymmetric flows.7,25 Furthermore, COMSOL Multiphysics can
reduce the original axisymmetric three-dimensional (3D) geometry to
a two-dimensional (2D) physics interface where the flow in the rota-
tional direction is still included in the equations in rotating flows,
which reduces the computing costs but includes all three velocity com-
ponents. This method is suitable for physical quantities that have no
or little change in the tangential direction; otherwise, some informa-
tion may be lost.

The change of incompressible water was induced by a rotating
disk in a sealed cylinder of height H and radius R in the COMSOL
Multiphysics software. A stationary and axisymmetric flow can be
described by the Navier–Stokes equations and the continuity equation20
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where ~V ¼ ðVr ;Vh;VzÞ denotes the velocity (m/s), Vr denotes the
radial velocity, Vh denotes the swirl/tangential velocity, Vz denotes the
axial velocity, q denotes the density (kg/m3), g denotes the dynamic
viscosity (Pa s), p denotes the pressure (Pa), and ~F ¼ ðFr ; Fh; FzÞ
denotes the volumetric force.

We use the theory of swirl decay60,61 to analyze the physical
mechanism of the VB. The swirl and axial velocities in a sealed cylin-
der can be described as follows:

Vh ¼ FðrÞ expð�czÞ;Vz ¼ WðrÞ expð�czÞ; (5)

where c is a decay rate, 0 < c < 1. Equation (5) is valid internally, not
near the boundaries.

Let us introduce the following dimensionless variables:15,16

V 0
r ¼ Vr=xR; V 0

h ¼ Vh=xR; V 0
z ¼ Vz=xR; r0 ¼ r=R;

z0 ¼ z=R; p0 ¼ p=ðqx2R2Þ; F0
r ¼ Fr=ðqx2RÞ;

F0
h ¼ Fh=ðqx2RÞ; F0

z ¼ Fz=ðqx2RÞ; n0 ¼ n=x;

(6)

then V 0
r ;V

0
h;V

0
z; r

0; z0; p0; F0
r ; F

0
h; F

0
z satisfy

V 0
r
@V 0

r

@r0
� V

02
h

r0
þ V 0

z
@V 0

r

@z0

� �
þ @p0

@r0

¼ 1
Re

1
r0

@

@r0
r0
@V 0

r

@r0

� �
� V 0

r

r02
þ @2V 0

r

@z02

� �
þ F0

r ; (7)

V 0
r
@V 0

h

@r0
þV 0

rV
0
h

r0
þV 0

z
@V 0

h

@z0

� �
¼ 1
Re

1
r0

@

@r0
r0
@V 0

h

@r0

� �
�V 0

h

r02
þ@2V 0

h

@z02

� �
þF0

h;

(8)

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 093613 (2022); doi: 10.1063/5.0107296 34, 093613-2

VC Author(s) 2022

https://scitation.org/journal/phf


V 0
r
@V 0

z

@r0
þ V 0

z
@V 0

z

@z0

� �
þ @p0

@z0
¼ 1

Re
1
r0

@

@r0
r0
@V 0

z

@r0

� �
þ @2V 0

z

@z02

� �
þ F0

z;

(9)

r0 � ~V 0 ¼ 1
r0

@

@r0
ðr0V 0

rÞ þ
@V 0

z

@z0
¼ 0: (10)

The dimensionless method15,16 is a common way to study physical
problems with mathematical tools, where parameters can be
reduced and certain mathematical problems simplified by choos-
ing appropriate transformations. In our simulations, the volumet-
ric force components F0

r ; F
0
h, and F0

z were set to zero. Rotating
flows were initiated by the upper rotating disk with angular veloc-
ity x. The sealed cylinder was described with the aspect ratio
k ¼ H=R. The Reynolds number, which characterizes the relative
importance of the inertial and viscous forces, was defined as
Re ¼ xR2=�, where � ¼ g=q is the kinematic viscosity.7,17 The
angular velocity x and aspect ratio k were adjustable, and the
radius R was 17.5mm. The density of water was 1:0� 103 kg/m3,
and the dynamic viscosity was 1:0� 10�3 Pa s. Because the
flow showed a negligible departure from axisymmetry until
into the unsteady-flow domain,17 we reduced the original 3D
geometry to 2D. We set the top boundary as a sliding wall
(0 � r0 < 1; z ¼ k),15

V 0
r ¼ V 0

z ¼ 0; V 0
h ¼ r0; (11)

and the sidewall (0 � z0 < k; r0 ¼ 1) and bottom boundary of the cyl-
inder (0 � r0 � 1; z0 ¼ 0) as non-slip walls

V 0
r ¼ V 0

h ¼ V 0
z ¼ 0; (12)

and the rotation axis (0 � z0 < k; r0 ¼ 0) as axisymmetric boundary
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h ¼
@V 0

z

@r0
¼ 0: (13)

We implemented the simulations by utilizing the finite element
approach based on the commercial software COMSOL Multiphysics.
The rotating velocity change was realized by a parameter auxiliary
sweep, and large amounts of data were analyzed using Python.

III. RESULTS AND DISCUSSION

The physical properties of rotating flows are crucially dependent
on their internal VB patterns. We performed over 1900 simulations
for four aspect ratios, k ¼ 1.5, 2.0, 2.5, and 3.3. The major simulation
parameters of the VB are summarized in Table I, where N is the num-
ber of simulations.

The basic numerical simulation of rotating flows in a sealed cylin-
der, schematic view of the sealed cylinder, and the streamlines and

velocity components at Re¼ 800 are shown in Fig. 1. Water filled
the sealed cylinder, and the aspect ratio was defined as k ¼ H=R [see
Fig. 1(a)]. There was meridional circulation induced by the disk rota-
tion [Fig. 1(b)]: water moved away from the rotating disk along the
sidewall, converged to the axis near the stationary disk, and moved
back to the rotating disk near the axis, forming a centrifugal circulation
cell. The swirl velocity [Fig. 1(d)] was much larger than the radial
velocity [Fig. 1(c)] and the axial velocity [Fig. 1(e)]. Compared with
the swirl and axial velocities, the radial velocity was negligible.
According to the cyclostrophic balance, the centrifugal force, qV2

h=r,
induced a radial gradient of pressure @p=@r, namely, qV2

h=r¼ @p=@r,
where q is the water density, Vh is the swirl velocity, and r is the dis-
tance from the rotation axis. The pressure near the rotation axis is
smaller than that in the periphery. The stronger the swirl is, the larger
the pressure reduction is. The axial velocity was positive in the hour-
glass structure domain, which means that in this domain, the water
flowed upward, and it flowed downward in other areas [Fig. 1(e)]. In
this study, we focused on the internal VB morphology and propaga-
tion characteristics around the sealed cylinder axis for multiple aspect
ratios at large values of Re.

A. Morphology of separated vortex rings (VBs) for four
aspect ratios

The morphology of vortex breakdown (VB) was a pair of
counter-centrifugal circulation cells. Figure 2 shows the patterns of
this rotating flow in the axisymmetric profile at a few increasing char-
acteristic values of Re, illustrating how a VB emerged, expanded, con-
tracted, and disappeared when the aspect ratio k ¼ 1:5. Water
rotating around the sealed cylinder axis moved toward to the rotating
disk, while water near the bottom stationary disk moved toward the
sealed cylinder axis. At Re¼ 1050, the streamlines near the axis
formed a bulge, which expanded along the radial direction. At about
Re¼ 1080, a VB began appearing in the bulge domain, and the VB
began expanding and grew near the axis. The VB almost grew to the
largest value at Re¼ 1400; then, it slowly decayed and disappeared at
Re¼ 2000. In addition, the height of the VB center descended quickly
initially and then slowly with increasing Re.

The Re dependence of multiple VBs for k ¼ 2:0, 2.5, and 3.3 are
shown in Figs. 3–5. For k ¼ 2.0, two VBs emerged and disappeared at
the axis in the range of Re¼ 1400–3020, as shown in Fig. 3. At
Re¼ 1400, the streamlines near the axis began forming a bulge, and
this bulge expanded along the radial direction. At Re¼ 1500, a VB
began to appear in the bulge domain near the axis, and a new bulge
appeared above the first VB. The first VB began developing and grew
near the axis, and the first VB moved toward to the bottom stationary
disk. The bulge above the VB developed and grew to the second VB at
Re � 1850; then, it slowly decayed and disappeared at Re¼ 2500,
while the first VB still slowly decayed and disappeared at Re¼ 3020.
There were two VBs in the rotating fluids in the range of Re � 1850 to
2200. The first VB appeared at a lower Re than the second VB and dis-
appeared at a higher Re than the second VB.

For k ¼ 2:5, streamline patterns at a few increasing characteristic
values of Re¼ 1700–6000 are shown in Fig. 4. At Re¼ 1700, the
streamlines near the axis formed two bulges, and these bulges
expanded along the radial direction. In the range of Re¼ 1970–2100, a
VB began appearing in the bulge domain near the axis, and another
bulge developed into a new VB. The two VBs began developing and

TABLE I. Major simulation parameters of internal vortex breakdown (VB) in sealed
cylinders.

Case R(m) H(m) k ¼ H=R Re ¼ xR2=� Re interval N

1 0.0175 0.026 25 1.5 800–6000 10 521
2 0.0175 0.035 00 2.0 800–6000 10 521
3 0.0175 0.043 75 2.5 1700–6000 10 431
4 0.0175 0.05775 3.3 2500–7100 10 461
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grew near the axis, and the two centers of the VBs moved toward the
bottom stationary disk with increasing Re. The top bulge was develop-
ing and grew to the second VB at Re¼ 2300 and then slowly decayed.
The upper VB disappeared at Re¼ 3800, while the lower VB still
slowly decayed and disappeared at Re¼ 6000. There were two VBs in
the rotating fluids in the range of Re¼ 1970–3600. The first VB

appeared first and disappeared last, while the second VB appeared last
and disappeared first in the range of Re¼ 3600–6000.

For k ¼ 3:3, three VBs emerged and disappeared in the range of
Re¼ 2700–7100, as shown in Fig. 5. At Re¼ 2700, the streamlines
near the axis formed two bulges; the lower lump was round, and the
upper lump was slender. A VB first appeared in the lower lump domain

FIG. 1. Rotating flows in a sealed cylinder. (a) Schematic view of the sealed cylinder, with water filling the cylinder. (b)–(e), Streamlines, radial velocity, swirl velocity, and axial
velocity in the r 0 � z0 plane at the sheared steady state with Re¼ 800 and k ¼ 1:5.

FIG. 2. Development of vortex breakdown (VB) at a few characteristic values of Re for k ¼ 1:5. Black lines represent streamlines.
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FIG. 3. Evolution of two VBs at a few increasing characteristic values of Re for k ¼ 2:0. Black lines represent streamlines.

FIG. 4. Development of two VBs at a few characteristic values of Re for k ¼ 2:5. Black lines represent streamlines.
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at Re¼ 2720, and the symmetry of this VB was slightly weaker than that
for other aspect ratios. At Re¼ 2760, in the upper lump domain, a new
VB also appeared close to the rotating disk. In the range of
Re¼ 2860–3400, three VBs appeared near the sealed cylinder axis, one
in the lower lump domain and two in the upper lump domain. From
Re¼ 3400 to 4500, the two VBs merged together, forming a large VB,
and this VB moved downward to the VB in the lower lump domain.
The upper VB slowly decayed and disappeared in the range of
Re¼ 4500–7100. The upper VB disappeared at lower Re than the lower
VB. When there were multiple VBs, the first VB appeared first and dis-
appeared last, while the second VB appeared last and disappeared first. If
the two VBs were in the same lump domain, they merged together,
forming a large VB as Re increased. There are minor differences in the
streamlines shown in Figs. 2–5, which are also present in the experi-
ment.56 We performed simulations that show that the mesh sizes fine,
finer, and extra fine have almost no effect on the results, and the mesh
distribution in the near-axis region is nearly uniform, so the mesh is not
the main cause of minor differences in the results. The Reynolds number
and the seal cylinder structure may be the main factors causing the
minor differences.

B. Key flow characteristics along the axis, axial
velocity, pressure, and vorticity patterns
in axisymmetric profile

Because the VB centers were located at the axis, it was necessary
to study the distribution of the key flow characteristics along the axis

and the key physical quantities that caused the VBs. Figure 6
shows the results at Re¼ 800–6000 with intervals of 10 for k ¼ 1:5.
Figures 6(a)–6(c) show the key flow characteristics along the axis. The
z0 profiles of the axial velocity at the r0 ¼ 0 are shown in Fig. 6(a). As
Re increased, the peak values of axial velocities decreased as Re
increased, and the positions of z0 corresponding to the peak value
gradually decreased and moved toward the stationary disk. The V 0

z
local minimum first decreased until Re¼ 1400 and then increased
gradually, and the z0-coordinate corresponding to the V 0

z local mini-
mum approached the stationary disk. The inset figure shows that
some minimum values of V 0

z at Re¼ 1000, 1050, 1950, and 2000 were
positive, and no VB was generated in the rotating water. The mini-
mum values were negative in the approximate range of 1050 < Re
< 1950 where the VB existed. The change of a fluid depends on the
pressure. The distributions of the pressure (p0) at the axis at a few char-
acteristic Re values are shown in Fig. 6(b). As Re increased, the pres-
sure (p0) at the axis at r0 ¼ 0 increased. The dotted curve showed that
the pressure minimum (p0min) value increased and the location shifted
toward the stationary disk caused by the converging flow to the axis
vicinity as Re increased. Figure 6(c) shows the vorticity magnitude n0

at the axis at a few characteristic Re values. The curves reveal that the
vorticity magnitude n0 at the axis did not monotonically decay from
the rotating disk toward the stationary disk. There was a local maxi-
mum of the vorticity near z0 ¼ 0:343 at Re¼ 800. As Re increased,
this local peak value increased and then decreased during the simulta-
neous movement of the n0 maximum toward the stationary disk vicin-
ity. The intensification of the swirl near the stationary disk center was

FIG. 5. Development of three VBs at a few characteristic values of Re for k ¼ 3:3. Black lines represent streamlines.
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caused by angular momentum from the fluid convergence to the axis
vicinity.

Figures 6(d)–6(f) show the distribution of the streamlines, axial
velocity, pressure, and vorticity for k ¼ 1:5. Because the natural loga-
rithm can magnify the value near zero, we plotted the axial velocity in
the form log(jV 0

zj) and the corresponding streamlines patterns in Fig.
6(d). The yellow areas represent the local velocity jV 0

zj being very close
to or equal to zero, while the red areas represent the velocity jV 0

zj being
greater than zero. Two yellow curves pass through the slender vortex
near the edge in the sealed cylinder. As Re increased to 1080, a VB
emerged when the local minimum of the axial velocity log(jV 0

zj)
formed a closed circle, a yellow circle at the axis. Both the VB and the
yellow circle expanded as Re increased to 1400, then shrank until
Re¼ 1920 and disappeared when Re> 1920. Whether the local mini-
mum value of log(jV 0

zj) near the axis formed a closed circle was the
precisely condition for judging the appearance and disappearance of
the VB. The result showed a distinct feature that the location of the
VB shifted along the axis from the middle of the axis vicinity at
Re¼ 1080 to the stationary disk vicinity at Re¼ 1920.

Figure 6(e) shows contours of constant pressure (rainbow lines)
and streamlines (gray lines) for the same increasing characteristic val-
ues of Re. There was a low-pressure area at the axis because of the con-
vergence of the swirling flow to the axis above the center of the
stationary disk, and the location of the minimum-pressure domain
shifted toward the stationary disk vicinity as Re increased. The patterns
showed that the suction of the minimum-pressure domain generated a
VB and attracted it to the stationary disk in the range of
Re¼ 1080–1920. As Re increased above 1600, the pressure gradient of

the low-pressure region decreased, and the contours of constant pres-
sure tended to become parallel to the axis. The diminishing of the axial
gradient of the pressure and the weakening of the suction led to the
disappearance of the VB when Re> 1920.

Figure 6(f) shows the vorticity magnitude and streamlines in the
axisymmetric profile at a few characteristic values in the range of
Re¼ 1000–1920. It shows that a local maximum of the swirl vorticity
domain appeared close to the axis near the stationary disk, and the
value of the maximum of the swirl vorticity increased as Re increased
in the range of 1000–1400. That location of the vorticity maximum
domain shifted toward the stationary disk vicinity. The reason was
that water flow convergence transported the angular momentum to
the axis vicinity. When Re> 1400, this domain expanded to the side-
wall and the maximum decreased. As Re increased, the near-axis flow
convergence became weak because more water continuously descend-
ing near the sidewall turned upward when it reached the stationary
disk vicinity before approaching the axis vicinity. This part of the
water flowed upward due to the growing centrifugal force produced by
the significant increase in vorticity near the stationary disk.

C. Swirl velocity and radial pressure gradient patterns
in radial profiles

To further uncover the physical mechanism of fluid convergence,
the swirl velocity and radial pressure gradient were studied in the
radial profiles at various distances h0 for a stationary disk with
Re¼ 1200 for k ¼ 1:5 (Fig. 7). As shown in Fig. 7(a), the maximum of
the swirl velocity decreased gradually as h0 decreased. The top three
plots show that the swirl velocity increased almost linearly, with slight

FIG. 6. Distributions of (a) axial velocity V 0
z, (b) pressure, and (c) vorticity magnitude at r

0 ¼ 0 for a few characteristic values of Re and k ¼ 1:5. (d) Streamline patterns of
Log(jV 0

zj), (e) contours of constant pressure, and (f) vorticity magnitude.
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fluctuations in the r0 range 0–0.8, then dropped rapidly to zero at the
edge. The bottom three plots showed that the velocity curve was
arched and the maximum value was near r0 ¼ 0:514. There were rich
internal 3D flow structures at different h0 values [Fig. 7(c)]. At the
same time, the high-speed belt near the edge gradually diffused to the
middle region, as shown in the red and yellow regions. Some water
flowed and diffused to the edge, some flowed and converged to the
axis, and some converged to the middle ring belt. A VB appeared at
h0 ¼ 0:631, and the minimum pressure on the rotating axis was at
h0 ¼ 0:258. For both plots, there were relatively dense areas of stream-
lines on the rotating axis. This demonstrated that there was a signifi-
cant difference of the internal microstructures of the rotating flows.

The curves in Fig. 7(b) show the fluctuation and variation trends
of the radial pressure gradient with decreasing height. The center of
the VB was located at h0 ¼ 0:631, and there was a gentle and relatively
small pressure gradient area (blue area), which was suitable for the sta-
bility of the VB. As the height descended, the fluctuation of the pres-
sure gradient near the rotating axis became more and more evident,
and the pressure gradient changed in a step shape. The fluctuation of
the pressure gradient and the step-like change may have been the
main factors causing the significant differences of the internal

microstructures of the rotating flows. The radial pressure gradient in
the radial profiles was analyzed to explain the abundant internal
microstructures [Fig. 7(d)]. The pressure gradient did not increase all
the way but fluctuated along the radial direction, forming a circular
band of pressure gradients. With the increase in the depth, the ring
band with a large pressure gradient near the edge gradually drew closer
to the center, and the pressure gradient fluctuated during the process
of drawing closer. The area of a small pressure gradient near the rotat-
ing axis gradually shrank, which meant that the pressure gradient near
the axis became larger and larger. The fluctuation of the pressure gra-
dient may have been the main cause of the VB patterns.

D. Axial length of VBs varied with increasing Re under
different structures

To further quantify the morphological evolution of the VB with
increasing Re, we quantitatively studied the axial length of the VB. The
axial length of the VB was described by the spacing between the
upstream and downstream streamline stationary points at the axis of
rotation where the VB occurred.7 The VB axial lengths of different
structures were calculated using Python. Figure 8 shows that the length

FIG. 7. Radial distribution and internal three-dimensional (3D) flow patterns of swirl velocity and variation trends of radial pressure gradient at various distances h0 relative to
the stationary disk at Re¼ 1200 and k ¼ 1:5. (a) Radial distribution of swirl velocity and (b) variation trends of radial pressure gradient with increasing depth. (c) Internal 3D
swirl velocity and (d) radial pressure gradient patterns in the radial profiles.
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of the VB varied continuously with increasing Re for the four struc-
tures. For k ¼ 1:5 [Fig. 8(a)], only one stable VB appeared in the range
of Re¼ 1073–1941. A VB appeared around Re¼ 1100, expanded to a
maximum around Re¼ 1370, and then slowly shrank and finally dis-
appeared. The specific results show the evolution of the number of
VBs for k ¼ 1:5 was as follows: 0! 1! 0.

As Re increased, up to two VBs appeared in the rotating fluid
when k ¼ 2:0 and 2.5 [Figs. 8(b) and 8(c)]. For k ¼ 2:0, a stable VB
appeared and evolved into two VBs, then merged into one VB, and
finally disappeared with increasing Re. The evolution of the number of
VBs was as follows: 0 ! 1 ! 2 ! 1 ! 0. For k ¼ 2:5, as Re
increased, a small VB was created and quickly split into two VBs,
which then merged into a larger VB; this VB split again into two VBs,
which then merged into one VB and finally disappeared. The evolu-
tion of the VB number was as follows: 0! 1! 2! 1! 2! 1! 0.
Both generated at most two VBs for k ¼ 2:0 and 2.5. The larger the
aspect ratio was, the more complex the evolution of the VB was, and
after growing, splitting, and merging, the VBs split and merged again
and eventually disappeared.

Figure 8(d) shows that the VB at k ¼ 3:3 seemed to evolve in
the same way as that at k ¼ 2:5. However, the evolution of the VB
was made more complex and mysterious by zooming in on the image
[Fig. 8(e)] showing the appearance of three VBs in the range of
Re¼ 2750–2800. It began with one VB, split into two VBs, and then
split into three VBs. These three VBs rapidly merged into two large

VBs, which merged into one largest VB. This largest VB split again
into two VBs, which then merged into one VB, decayed, and finally
disappeared. The evolution of the number of VBs was as follows:
0! 1! 2! 3! 2! 1! 2! 1! 0.

The results showed that the VB axial dimension varied nonli-
nearly with the increase in Re. With the increase in the structure factor,
the nonlinear phenomenon of the VB axial dimension variation
became more complicated, not only in terms of the variation of the
VB number but also VB generation, splitting, merging, secondary
splitting, secondary merging, and even tertiary splitting. The maxi-
mum axial dimension of the VB also increased with the increase in the
structure factor.

E. Stair-step effect of axial velocity, pressure,
and vorticity on VB trajectories

In order to fully understand the mechanism of VB generation,
especially the change mechanism of VBs for different aspect ratios, we
calculated the extreme value distributions of the axial velocity, pres-
sure, and vorticity at r0 ¼ 0. The specific point locations associated
with the VB for four different aspect ratios were obtained, as shown in
Figs. 9(a)–9(f). We processed more than 5800 raw data curves of the
axial velocity, pressure, and vorticity with Python. The upper three fig-
ures show the distribution of the extreme Re values for the axial veloc-
ity, pressure, and vorticity. The lower figures show the locations
corresponding to the extreme values.

FIG. 8. Paraxial streamwise length of VBs changed continuously with increasing Re for four structures. (a) One VB emerged (see the inset figure), expanded, shrank, and dis-
appeared with k ¼ 1:5. The inset figure shows the steady VB at Re¼ 1200. (b) For k ¼ 2:0, one steady VB evolved into two VBs, then merged into one VB, and finally disap-
peared. The right figures show one stable VB (bottom) and two stable VBs (top). (c) One small VB quickly split into two VBs, then merged into one larger VB. This VB again
split into two VBs, then merged into one VB, and finally disappeared (k ¼ 2:5). (d) One small VB quickly split into two VBs, split into three VBs, then merged into two larger
VBs. The two larger VBs merged into one larger VB, again split into two small VBs, then merged into one VB, and finally disappeared (k ¼ 3:3). (e) Three stable VBs, where
different background colors represent different VB intervals (top). The partial enlargement of figure (d) shows the complex evolution of the VBs (bottom).
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Figure 9(a) depicts the dependence of the minimum value of the
axial velocity V 0

zmin on Re in the rotation axis. V 0
zmin decreased rapidly

and then increased gradually as Re increased. The VB appeared when
V 0

zmin < 0; the VB continued to grow until V 0
zmin dropped to the curve

minimum, where the VB expanded to a maximum. Then, V 0
zmin began

to increase and the VB began to contract until it disappeared when
V 0

zmin > 0. The VB judgment criterion was that if V 0
zmin < 0, the

VB existed; if V 0
zmin > 0, the VB did not exist. The trough of the

V 0
zmin � Re curve revealed that the VB expanded to the maximum.

The exact Re value corresponding to the appearance and disap-
pearance of the VB was determined by using an interpolation method
based on the VB evolution judgment criteria, as shown in Table II.
NmaxVB is the maximum number of VBs, ReA is the critical Re value
for the first appearance of a VB, ReM is the critical Re value for the
expansion of a VB to its maximum, ReD is the critical Re value for the
disappearance of a VB, and DReVB is the existence of the Re interval of
a VB. For k ¼ 1:5, a VB appeared, expanded, contracted, and disap-
peared in the range of Re¼ 1073–1941. For k ¼ 2:0 and 2.5, at most

two VBs were generated, and the ranges of the corresponding Re for
which the VBs existed were 1444–3088 and 1906–4539. For k ¼ 3:3,
up to three VBs occurred, developed, contracted, and disappeared in
the range of Re¼ 2707–7539. As the aspect ratio k increased, the Re
value corresponding to the first occurrence in the VB increased,
expanding to a maximum at higher Re values, and the Re interval in
which the VB existed was larger.

The variation in the minimum pressure p0min and maximum vor-
ticity nmax at r0 ¼ 0 for different aspect ratios is shown in Figs. 9(b)
and 9(c). The curves in Fig. 9(b) show that the minimum p0min
increased monotonically as Re increased for all the aspect ratios. The
larger the aspect ratio k was, the larger the rate of increase in p0min was
at r0 ¼ 0. p0min increased monotonically with increasing Re, regardless
of whether VB appeared or disappeared. For all k, the rate of increase
in the pressure minimum at r0 ¼ 0 was divided into two stages, start-
ing fast and growing at a similar rate, and then growing slowly as Re
increased.

Under the VB, there was a local vorticity maximum region on
the axis near the stationary disk. From Fig. 9(c), it can be seen that the
local vorticity maximum n0max on the axis changed considerably, with
n0max first increasing rapidly to a certain value, then decreasing rapidly,
and finally decreasing gradually. At lower Re, the convergence effect
was stronger than the rotation effect, and the converging flow trans-
ported the angular momentum near the axial direction, which
enhanced the fluid rotation and led to a gradual increase in n0max.
When Re was further increased, the convergence effect balanced the
rotation effect, and n0max reached the maximum value. As Re increased,
the convergence effect was weaker than the rotation effect, and more
and more of the water descending near the sidewall flipped upward

FIG. 9. Extreme value distributions of the axial velocity, pressure, and vorticity at r 0 ¼ 0 and the particular point locations of the VB for four different aspect ratios. Extreme
value distributions of (a) axial velocity, (b) pressure, and (c) vorticity for different values of Re. (d)–(f) Corresponding locations of the extreme values.

TABLE II. Precise Re range of VB appearance, maximum, and disappearance.

Case R(m) H(m) k ¼ h0 NmaxVB ReA ReM ReD DReVB

1 0.0175 0.026 25 1.5 1 1073 1410 1941 868
2 0.0175 0.035 00 2.0 2 1444 1930 3088 1644
3 0.0175 0.043 75 2.5 2 1906 2490 4539 2633
4 0.0175 0.057 75 3.3 3 2707 4110 7539 4822
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when it approached the stationary disk before approaching the axis,
which led to a rapid decrease in n0max and an expansion of the local
vorticity to an extremely large domain away from the axis. When Re
increased to a larger value, the centrifugal cycle accelerated so that the
angular velocity of water near the stationary disk increased and n0max
began to decrease slowly.

Figure 9(d) shows the dependence of the V 0
zmin positions, H

0
V 0

zmin
,

on Re for k ¼ 1:5, 2.0, 2.5, and 3.3. The curves show that H0
V 0

zmin

decreased exponentially, first fast and then slow. For small Re, a small
vorticity could not match the meridional change because the vortex
flow decayed rapidly from the rotating disk. As Re increased, the
enhanced sidewall effect caused a slow decrease in the V 0

zmin position.
With a further increase in Re, the increase in the centrifugal force led
to radial expansion of the local maximum vorticity region, which
caused the position of V 0

zmin to decrease more slowly. The results
showed that the decay rate of the position decreased slightly near the
stationary disk as k increased. This was because the higher H0 was, the
longer the flow descent path near the sidewall became. A larger Re was
needed for the convergence effect to become dominant. The inset is an
enlargement, which shows the interesting feature that the position of
V 0

zmin decreased in steps as Re increased. It is an interesting feature
that the location of V 0

zmin showed a stepwise descent with increasing
Re. If V 0

zmin < 0, the position of the VB can be represented by the
V 0

zmin position. The VB moved in a stepwise manner toward the sta-
tionary disk with a step height of DH0 ¼ 0:007 43. When the VB
moved to a certain position, it needed gather sufficient energy from
the converging flow to overcome the energy barrier in order to
approach the stationary disk.

The minimum pressure domain suction drove the VB in a step-
wise manner toward the stationary disk as Re increased. We studied
the dependence of the p0min position, H

0
p0min

, on Re for k ¼ 1:5, 2.0, 2.5,
and 3.3, as shown in Fig. 9(e). This shows that position of p0min
decreased exponentially, first faster and then slower. The step effect
was significant in the movement of the pressure minimum toward the
vicinity of the stationary disk. For the same k, the position of p0min was
lower than that of V 0

zmin, closer to the stationary disk. The step height
DH0 � 0:0457, and the step width DRe widened as Re increased. The
step width DRe can correspond to the energy potential to some extent.
The closer the pressure minimum was to the fixed disk, the larger the
step width DRe was, and the higher the energy potential barrier was
that the fluid needed to overcome.

According to the cyclostrophic balance, the radial pressure gradi-
ent was caused by the centrifugal force. That is, the stronger the fluid
rotation was, the greater the pressure drop became. Figure 9(c) shows
the local vorticity maximum domain n0max position distribution. The
position of n0max decreased exponentially, first faster and then slower.
For the same k, the n0max position was lower than that of V 0

zmin, similar
to the p0min position, and it stopped near the stationary disk. The stair-
step effect was more pronounced during the movement of the vortex
maximum position toward the vicinity of the stationary disk.
However, the step change was relatively complex compared to the
changes in the velocity and pressure. The step change shown in the
illustration was a combination of two-step changes: a primary step
change and a secondary step change. For the primary step change, the
step height was DH0

M and the step width was DReM . For the secondary
step change, the step height was DH0

S, and the width was DReS. The
step height of the primary step change DH0

M � 0:0457, which was the

same as that of the H0
p0min

change. The secondary step height DH0
S was

about 0.006 86, which was slightly smaller than that of the H0
V 0

zmin

change. DReM and DReS increased as the maximum position of the
local vorticity moved toward the stationary disk to overcome a larger
energy potential. The secondary step change may have been caused by
the competition of flow convergence and rotation. The primary step
change of the vorticity maximummay have been the main factor caus-
ing the step change of the pressure minimum, and the secondary
change of the vorticity maximum caused the axial velocity minimum
step change. This could also explain why the center of the pressure
minimum was below the VB. The major step change of the vorticity
maximum caused a relatively large drop in the location of the pressure
minimum, which dropped lower than the center of the VB, resulting
in the pressure minimum and the center of the VB not coinciding, but
rather being below the VB.

IV. CONCLUSION

In this study, we focused on the internal separated vortex ring
(VB) morphology and trajectory around the sealed cylinder axis for
multiple aspect ratios in the large-Re range. By utilizing the finite ele-
ment approach, we obtained abundant internal VBs and tracked the
movement in a sealed cylinder. A morphological study of a separated
vortex ring showed how one VB, two VBs, and three VBs emerged,
expanded, shrank, and disappeared for four aspect ratios as Re
increased. Axial flow characteristics along the axis, axial velocity, pres-
sure, and vorticity distributions were given for the axisymmetric pro-
file. The flow characteristics along the rotating axis were studied in
detail, such as the axial velocity, pressure, and vorticity, which were
the key physical quantity distributions causing VBs. The swirl velocity
and radial pressure gradient were studied in the radial profiles at vari-
ous distances h0 relative to the stationary disk. The variation pattern of
the paraxial streamwise length of the VBs and the distribution of the
axial velocity, pressure, and vortex extremes and their corresponding
positions were quantitatively studied and analyzed using Python and
the theory of swirl decay.

We discovered that the exact condition for the appearance and
disappearance of VBs is whether the local minimum of the natural log-
arithm of the axial velocity formed a closed circle near the axis. When
there were multiple VBs, the first VB appeared first and disappeared
last, while the second VB appeared last and disappeared first. Two
VBs in the same lump domain merged together, forming a large VB as
Re increased. By quantitatively studying the VB, we determined the
precise Re range of the VB appearance, maximum, and disappearance.
The VB axial dimension varied nonlinearly with the increase in Re.
With the increase in the structure factor, the nonlinear phenomenon
of the VB axial dimension variation became more complicated, not
only in terms of the variations of the number of VBs but also the VB
generation, splitting, merging, secondary splitting, secondary merging,
and even tertiary splitting. The maximum axial dimension of the VB
also increased with the increase in the structure factor. The competi-
tion of flow convergence and rotation is the key factor of the appear-
ance and disappearance of a VB. At a relatively low range of Re, the
convergence effect was stronger than the rotation effect, and the con-
verging flow transported the angular momentum to the axis vicinity,
which caused intensification of the swirl. As Re increased, the radial
gradient of the pressure increased due to the increasing centrifugal
force, and the suction of the pressure minimum domain generated a
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VB and attracted it closer to the stationary disk. As Re continued to
increase, the convergence effect was balanced with the rotation effect,
the vorticity increased to the maximum value, and the VB expanded
to the maximum. Subsequently, the VB shift blocked the water conver-
gence to the axis, which diminished the axial gradient of the pressure
and weakened the suction, and the VB gradually disappeared. The
most striking observations are that all the locations of the local
extrema of the axial velocity, pressure, and vorticity decreased in the
shape of a staircase as Re increased. The major step change of the vor-
ticity maximum caused a relatively large drop in the location of the
pressure minimum, which dropped below the center of the VB, result-
ing in the pressure minimum and the center of the VB not coinciding,
but rather being below the VB.

The discovery of the stair-step change of the VB provided evi-
dence of the existence of a new class of fluid behavior that may offer
additional freedom to design sealed cylinders by choosing aspect
ratios. Furthermore, it provided insight into controlling the vortices,
predicting the internal vortex movement trajectories in sealed cylinder
fluids, and uncovering other as yet unknown vortex behaviors, which
is vital in the science and engineering fields.
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