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Fizeau drag means that the speed of light can be regulated by the flow of water, owing to the momentum
interaction between photons and moving media. However, the dragging of heat is intrinsically elusive, due
to the absence of momentum in thermal diffusion. Here, we design a spatiotemporal thermal metamaterial
based on heat transfer in porous media to demonstrate the diffusive analog to Fizeau drag. The space-
related inhomogeneity and time-related advection enable the diffusive Fizeau drag effect. Thanks to the
spatiotemporal coupling, different propagating speeds of temperature fields can be observed in two
opposite directions, thus facilitating nonreciprocal thermal profiles. The phenomenon of diffusive Fizeau
drag stands robustly even when the direction of advection is perpendicular to the propagation of
temperature fields. These results could pave an unexpected way toward realizing the nonreciprocal and
directional transport of mass and energy.
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Light travels at different speeds along and against the
flow of water, which was theoretically predicted by Fresnel
[1] and experimentally verified by Fizeau [2]. This momen-
tous discovery, generally referred to as Fizeau drag, has
been well explained by relativistic kinematics. Similar
effects have also been revealed in other moving [3,4] or
spatiotemporal [5,6] media. Recently, two experimental
studies have reported plasmonic Fizeau drag by the flow of
electrons [7,8], which results from the nonlinear kinematics
of drifting Dirac electrons.
On the other hand, diffusive systems can also exhibit

wavelike behaviors [9–14], which provides the possibility
to realize diffusive Fizeau drag. However, unlike the
dragging of photons and polaritons by the momentum
interaction [Figs. 1(a) and 1(b)], it is intrinsically chal-
lenging to drag the macroscopic heat by the biased
advection [15,16] due to the absence of macroscopic heat
momentum [Fig. 1(c)]. Therefore, the forward and back-
ward propagating speeds of temperature fields are always
identical. Nevertheless, the amplitudes of temperature
fields are different in opposite directions, due to the
dissipative property of heat transfer [17,18]. Therefore, it
is still an extremely challenging problem to realize diffusive
Fizeau drag.
Here, we construct a spatiotemporal thermal metamate-

rial with space-related inhomogeneity and time-related
advection, to uncover diffusive Fizeau drag in heat transfer
[Fig. 1(d)]. Since the characteristic length of spatiotemporal
modulation is much smaller than the wavelength of wave-
like temperature fields, the proposed structure can be
regarded as a metamaterial. Neither periodic inhomogene-
ity nor vertical advection alone contributes to the horizontal

nonreciprocity, but their synergistic effect can give rise to
diffusive Fizeau drag. The underlying mechanism lies in
the coupling between heat flux and temperature change
rate, which can be regarded as the thermal counterpart of

FIG. 1. Origin of diffusive Fizeau drag. Fizeau drag of (a) light
and (b) polariton by the momentum interaction. (c) Failure of a
direct thermal analog due to the lack of macroscopic heat
momentum. (d) Fizeau drag of heat in a spatiotemporal thermal
metamaterial by thermal Willis coupling. The red arrows contain
the information of wave number and amplitude, indicating the
forward and backward cases with (a),(b),(d) different wave
numbers, and (c) different amplitudes.
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Willis coupling in mechanical waves [19–23]. Therefore,
the present nonreciprocity is distinctly different from the
synthetic-motion-induced nonreciprocity [24,25].
We first explain why the direct scheme presented in

Fig. 1(c) fails. Heat transfer in porous media is described by
ρ0∂tT þ ∇ · ðϕρauT − κ0∇TÞ ¼ 0, where ρ0 (or ρa) is the
product of mass density and heat capacity of the porous
medium (or fluid), κ0 is the thermal conductivity of the
porous medium, ϕ is the porosity, and u is the velocity of
the fluid with the horizontal and vertical components of ux
and uy, respectively. We consider a wavelike temperature
field described by T ¼ Aeiðβx−ωtÞ þ Tr, where β and ω are
the wave number and angular frequency, respectively. Here,
we use “wavelike” because heat transfer is essentially
governed by a diffusive equation rather than a wave
equation. We set the temperature field amplitude of A as
1 and the balanced temperature of Tr as 0 for brevity.
We apply a periodic source with a temperature of
Tðx ¼ 0Þ ¼ e−iωt, thus leading to a real ω and a complex
β. The imaginary part of β reflects the spatial decay rate of
wavelike temperature fields. We focus on the real part of β
because the propagating speed of wavelike temperature
fields can be calculated by v ¼ ω=Re½β�. The substitution
of T ¼ eiðβx−ωtÞ with a preset real ω into the governing
equation of heat transfer yields

βf;b ¼ �
ffiffiffi

2
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4κ0
þ i
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where βf and βb are, respectively, the forward and
backward wavenumbers with a definition of γ ¼
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. Since a nonzero ux
cannot generate different jRe½β�j in opposite directions,
the forward and backward propagating speeds of temper-
ature fields are identical, i.e., no diffusive Fizeau drag
(see Supplemental Material, note I for detailed discus-
sions [26]).
To achieve diffusive Fizeau drag, we introduce spatially-

periodic inhomogeneity to the porous medium,

ρðξÞ ¼ ρ0½1þ Δρ cosðGξþ θÞ�; ð2aÞ

κðξÞ ¼ κ0½1þ Δκ cosðGξÞ�; ð2bÞ

whereΔρ andΔκ are the modulation amplitudes,G ¼ 2π=d
is the modulation wave number, d is the horizontal
modulation wavelength, ξ ¼ xþ ζy is the generalized
coordinate with a definition of ζ ¼ d=h, h is the vertical
height, and θ is the modulation phase difference. To
exclude the captivation that the horizontal advection can
generate nonreciprocal amplitudes of temperature fields, as
described by the imaginary part of Eq. (1), we consider the

upward advection with a speed of uy, which does not
contribute to the horizontal nonreciprocity. The governing
equation of heat transfer in spatiotemporal thermal meta-
materials can be expressed as

ρ̄ðξÞ ∂T∂t þ ϕϵuy
∂T
∂y þ ∂
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�
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with definitions of ρ̄ðξÞ ¼ ρðξÞ=ρ0, κ̄ðξÞ ¼ κðξÞ=κ0,
ϵ ¼ ρa=ρ0, and D0 ¼ κ0=ρ0.
We further consider a wavelike temperature field with a

spatially periodic modulation,

T ¼ FðξÞeiðβx−ωtÞ ¼
�

X

s

FseisGξ
�

eiðβx−ωtÞ; ð4Þ

where FðξÞ is a Bloch modulation function with parameters
of s ¼ 0;�1;�2; � � � ;�∞ and F0 ¼ 1. We can treat
eiðβx−ωtÞ as the temperature field envelope and FðξÞ as
local inhomogeneity. The substitution of Eq. (4) into
Eq. (3) yields a series of component equations related
to the order of s. For accuracy, we consider s ¼
0;�1;�2; � � � ;�10 and Fjsj>10 ¼ 0 to obtain twenty-one
equations with twenty-one unknown numbers includ-
ing β and Fjsj≤10, so β can be numerically calculated.
The detailed derivations are presented in Supplemental
Material, note II [26].
The properties of spatiotemporal modulation are

reflected in three crucial dimensionless parameters of
2πΓ ¼ ϕϵuyd=D0, Λ ¼ Δρ cos θ=Δκ, and ζ ¼ d=h. The
parameter of 2πΓ is similar to the Peclet number, which
can describe the ratio of advection to diffusion. The
parameters of Λ and ζ reflect the influences of modulation
amplitude and wavelength, respectively. We define the
speed ratio as η ¼ jvf=vbj ¼ jRe½βb�=Re½βf�j to discuss the
degree of nonreciprocity, where vf and vb are the forward
and backward propagating speeds of temperature fields,
respectively.
We first discuss Λ when ζ ¼ 0.2 [Fig. 2(a)]. Since

2πΓ ¼ 0 and 2πΓ → ∞ always yield η ¼ 1, it is necessary
to introduce the vertical advection, but not the larger
the better. Meanwhile, a speed difference still exists when
Λ ¼ 0 (i.e., Δρ ¼ 0), so it is not necessary to modulate ρ
and κ simultaneously. We find two types of curves in
Fig. 2(a). Type I features that η is always larger than
one (the top three curves). Type II features that η is first
larger and then smaller than one (the bottom three
curves). The transition between types I and II is at
the critical point of Λ ¼ 1 (the third curve from the top),
where the modulations in Eqs. (2a) and (2b) do not
affect the effective thermal diffusivity in the vertical
direction (see Supplemental Material, note III for detailed
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calculations [26]). When we change ζ from 0.2 to 1
[Fig. 2(b)] and 2 [Fig. 2(c)], type III curves appear, with
η always smaller than 1. These three types indicate that
nonreciprocal speeds can be flexibly manipulated.
We further discuss θ when ζ ¼ 1 [Fig. 2(d)], so

Λ ¼ Δρ cos θ=Δκ can be both positive and negative. The
critical point of Λ ¼ 1 still determines the transition
between types I and II. Moreover, since θ ¼ π=2 always
leads to Λ ¼ 0, the curves in Fig. 2(e) are almost over-
lapped. We also discuss the thermal diffusivity of D ¼ κ=ρ
[Fig. 2(f)], where κ is the balanced value of the periodic
thermal conductivity and ρ is the balanced value of the
periodic product of mass density and heat capacity. The
peaks of η appear at almost the same value of 2πΓ.
Meanwhile, the peak of η gets larger as the thermal
diffusivity decreases, which, however, does not mean that
the smaller thermal diffusivity is the better. We do not
discuss the small thermal diffusivity because the system
becomes insulated.
We further plot the thermal dispersion in Fig. 3(a). The

thermal dispersion curve is symmetric when 2πΓ ¼ 0,
but becomes asymmetric when 2πΓ ¼ 8, which is the
proof of diffusive Fizeau drag. We also plot the wave
number difference ΔRe½β� ¼ Re½βf� þ Re½βb� in Fig. 3(b),

demonstrating linear responses to ω. More intuitively, a
speed difference leads to a time difference of tempera-
ture field evolution at two symmetric positions of x and
–x to reach the same phases. The forward phase at x
is Re½βf�x − ωtf, and the backward phase at −x is
−Re½βb�x − ωtb. The same phases correspond to a time
difference of Δt ¼ tf − tb, which can be calculated by

Δt ¼ ΔRe½β�jxj=ω: ð5Þ

Since Δt increases linearly with jxj, we focus on the
parameter of Δt=jxj ¼ ΔRe½β�=ω in Fig. 3(c), which is
almost invariant as ω changes.
Finite-element simulations are also performed with

COMSOL Multiphysics. For brevity, we define a
dimensionless temperature of T� ¼ ðT − TrÞ=A and a
dimensionless time of t� ¼ t=t0, where t0 is the time
periodicity of the temperature source. When 2πΓ ¼ 0
[Fig. 3(d1)], the forward and backward cases are identical
at y ¼ 0, but a slight difference appears at y ¼ �h=4
[Figs. 3(d2) and 3(d3)] due to the local inhomogeneity

FIG. 2. Numerical results of the speed ratio of η ¼ jvf=vbj as a
function of 2πΓ ¼ ϕϵuyd=D0. Λ ¼ Δρ cos θ=Δκ is tuned by
(a)–(c) Δρ or (d) θ. Except the parameters presented in (a)–(f),
the others are ϕ ¼ 0.1, ϵ ¼ 1,D0 ¼ 5 × 10−5 m2=s, d ¼ 0.02 m,
and ω ¼ π=10 rad=s for (a)–(f); Δρ ¼ 0.7 for (d); Δρ ¼ 0.6 for
(f); Δκ ¼ 0.5 for (a)–(e); Δκ ¼ 0.9 for (f); θ ¼ 0 for (a)–(d) and
(f); and θ ¼ π=2 for (e).

FIG. 3. Simulation results of diffusive Fizeau drag. (a) Thermal
dispersion. (b) Wave number difference ΔRe½β� ¼ Re½βf� þ
Re½βb� as a function of ω. (c) Time difference per unit of distance
Δt=jxj ¼ ΔRe½β�=ω as a function of ω. Evolution of T� when
(d1)–(d4) 2πΓ ¼ 0 or (e1)–(e4) 2πΓ ¼ 8, corresponding to uy ¼
0 or uy ¼ 0.2 m=s, respectively. Parameters: ϕ ¼ 0.1, ϵ ¼ 1,
D0 ¼ 5 × 10−5 m2=s, Δρ ¼ 0.9, Δκ ¼ 0.9, θ ¼ π, d ¼ 0.02 m,
h ¼ 0.02 m, and t0 ¼ 20 s. The simulation length is
30d ¼ 0.6 m. The left and right boundaries are insulated. The
upper and lower boundaries are set with periodic conditions.
Simulation (Sim); Numerical (Num).
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described by the FðξÞ in Eq. (4). As long as we discuss the
average temperature in the vertical direction, the effect of
local inhomogeneity can be excluded, so the forward and
backward cases become identical again [Fig. 3(d4)]. We
further set 2πΓ ¼ 8, and the simulation results demonstrate
a time difference of Δt� ¼ 0.14, which can be observed
locally [Figs. 3(e1)–3(e3)] and globally [Fig. 3(e4)]. The
numerical results predict a time difference of Δt� ¼ 0.15,
indicating that the numerical calculations are convincing.
Meanwhile, we plot the numerical results with dotted
curves, which agree well with the simulation results.
To reveal the underlying mechanism of diffusive

Fizeau drag, we analytically homogenize the governing
equation (see Supplemental Material, note IV for detailed
derivations [26]). We find two high-order terms of ∂2

t and
∂t∂x in the homogenized equation. This situation has a
similarity to the properties of Willis metamaterials
that result from the homogenization of inhomogeneous
media [19–23]. The modified constitutive relation describ-
ing the heat flux of J can be approximately expressed as
τ∂tJ þ J ¼ −κe∂xT0 þ σ2∂tT0, where τ, κe, σ2, and T0 are
the homogenized parameters. Clearly, besides the temper-
ature gradient of ∂xT0, the horizontal heat flux is also
coupled with the temperature change rate of ∂tT0, which
can be referred to as the thermal Willis term. Moreover, the
thermal Willis term can lead to nonreciprocal jRe½β�j, but
cannot generate nonreciprocal jIm½β�j. This property indi-
cates an obvious speed difference but no amplitude differ-
ence in opposite directions, which agrees with the
simulation results in Figs. 3(e1)–3(e4).
Inhomogeneity is crucial to thermal Willis coupling.

When we consider only the horizontal inhomogeneity
[Figs. 4(a1) and 4(a2)] or only the vertical inhomogeneity
[Figs. 4(b1) and 4(b2)], thermal Willis coupling will
disappear. We further change the modulations from cosine
functions to square wave functions denoted byΠ. When the
periodicity of inhomogeneity is the same as that in Fig. 3(e)

and 2πΓ ¼ 8, a time difference of Δt� ¼ 0.32 can be
observed [Figs. 4(c1) and 4(c2)]. Therefore, the square
wave modulation is more efficient than the cosine modu-
lation (Δt� ¼ 0.14). We further reduce the modulation
wavelength by a factor of five [Fig. 4(d1)]. When
2πΓ ¼ 8, a time difference of Δt� ¼ 0.04 appears, but it
is far smaller than that of Δt� ¼ 0.32 in Fig. 4(c2).
Therefore, the more homogeneous parameters yield weaker
thermal Willis coupling, which is consistent with the
existing understanding in mechanical waves [19–23].
For experimental suggestions, we design a three-

dimensional structure without fluids, i.e., a three-layer
solid pipe [Figs. 5(a) and 5(b)]. The inner and outer layers
are homogeneous with the same angular velocities of Ω.
The center layer is stationary with spatially periodic
parameters of ρðξ0Þ ¼ ρ0½1þ Δρ cos ðGξ0 þ θÞ� and
κðξ0Þ ¼ κ0½1þ Δκ cosðGξ0Þ�, where ξ0 ¼ xþ α=G is the
generalized coordinate in three dimensions with definitions
of cos α ¼ z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p

and sin α ¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p

. The two
rotating layers can provide the surface advection to the
center layer, which has a similar effect as the bulk
advection. The simulation results without and with angular
rotation are presented in Figs. 5(c1)–5(c4) and 5(d1)–5(d4),
respectively. The detecting locations are in the inner layer,
center layer, outer layer, and all layers, respectively.
Clearly, with proper angular rotation, a time difference
between the forward and backward temperature field
evolution appears, which is the direct indication of diffusive
Fizeau drag.
Moreover, we can also generate a wavelike temperature

field by setting an initial temperature of Tðt ¼ 0Þ ¼ eiβx,
thereby yielding a real β and a complex ω. To some
extent, this case shows a duality to diffusive Fizeau drag
(see Supplemental Material, note V for detailed discus-
sions [26]).
Finally, we conclude the distinctive features of diffu-

sive Fizeau drag. (I) As described by Eq. (1), only the
biased advection cannot realize diffusive Fizeau drag.
(II) Diffusive Fizeau drag in spatiotemporal thermal meta-
materials results from thermal Willis coupling between heat
flux and temperature change rate. (III) Diffusive Fizeau
drag is unexpected because the vertical advection is
generally unable to induce the horizontal nonreciprocity.
(IV) Three types of curves in Fig. 2 indicate that diffusive
Fizeau drag can be flexibly controlled.
In summary, we have revealed diffusive Fizeau drag in a

spatiotemporal thermal metamaterial, featuring a speed
difference of temperature field propagation in opposite
directions. Spatial or temporal modulation alone cannot
realize the horizontal nonreciprocity, so spatiotemporal
modulation necessarily introduces the high-order coupling,
which can be referred to as thermal Willis coupling
between heat flux and temperature change rate. Diffusive
Fizeau drag has also been visualized by observing the time
difference of temperature field evolution at two symmetric

FIG. 4. Influences of inhomogeneity on thermal Willis cou-
pling. The left column shows different kinds of inhomogeneity.
The right column shows the evolution of T�. The parameters and
boundary conditions are the same as those in Fig. 3.
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positions. These results not only suggest a distinct mecha-
nism to achieve nonreciprocal diffusion [30–32] by thermal
Willis coupling but also have potential applications for
controlling nonequilibrium heat and mass transfer [33–35].
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