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Supplemental Note I: Proof of no direct thermal analog 

Since the macroscopic heat does not carry any momentum, the biased advection carrying 

a momentum cannot generate a speed difference of temperature field propagation in two 

opposite directions, which is proved as follows. 

Heat transfer in a two-dimensional homogeneous porous medium is governed by 

 𝜌0
𝜕𝑇

𝜕𝑡
+ 𝛁 ⋅ (𝜙𝜌𝑎𝒖𝑇 − 𝜅0𝛁𝑇) = 0, (S1) 

with definitions of 𝜌0 = 𝜙𝜌𝑎 + (1 − 𝜙)𝜌𝑠0  and 𝜅0 = 𝜙𝜅𝑎 + (1 − 𝜙)𝜅𝑠0 . 𝜌𝑎  (or 𝜌𝑠0 ) is 

the product of mass density and heat capacity of the fluid (or solid). 𝜅𝑎 (or 𝜅𝑠0) is the thermal 

conductivity of the fluid (or solid). The substitution of a wavelike temperature field described 

by 𝑇 = ei(𝛽𝑥−𝜔𝑡) into Eq. (S1) yields 

 −i𝜔𝜌0 + i𝛽𝜙𝜌𝑎𝑢𝑥 + 𝛽2𝜅0 = 0. (S2) 

Since we apply a periodic source with a temperature of 𝑇(𝑥 = 0) = e−i𝜔𝑡, 𝜔 is real and 𝛽 

is complex. We can take 𝛽 = 𝑝 + i𝑞, with 𝑝 and 𝑞 being two real numbers, so Eq. (S2) can 

be rewritten as 

 −i𝜔𝜌0 + i(𝑝 + i𝑞)𝜙𝜌𝑎𝑢𝑥 + (𝑝 + i𝑞)2𝜅0 = 0, (S3) 

which can be further decomposed into two equations according to its real and imaginary parts, 

 −𝑞𝜙𝜌𝑎𝑢𝑥 + (𝑝2 − 𝑞2)𝜅0 = 0, (S4a) 

 −𝜔𝜌0 + 𝑝𝜙𝜌𝑎𝑢𝑥 + 2𝑝𝑞𝜅0 = 0. (S4b) 

The solutions to Eqs. (S4a) and (S4b) can be expressed as 

 𝑝𝑓,𝑏 = ±
√2𝛾

4𝜅0
, (S5a) 

 𝑞𝑓,𝑏 =
−8𝜙𝜌𝑎𝑢𝑥𝜔𝜌0𝜅0±√2𝛾(2𝜙

2𝜌𝑎
2𝑢𝑥

2+𝛾2)

16𝜔𝜌0𝜅0
2 , (S5b) 

with a definition of 𝛾 = √−𝜙2𝜌𝑎
2𝑢𝑥

2 +√𝜙4𝜌𝑎
4𝑢𝑥

4 + 16𝜔2𝜌0
2𝜅0

2 . Since 𝑝𝑓  and 𝑝𝑏  are two 
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opposite numbers, the forward and backward speeds of temperature field propagation 

calculated by |𝑣𝑓,𝑏| = |𝜔/𝑝𝑓,𝑏|  are the same. We further plot the thermal dispersion with 

different values of 𝑢𝑥 in Fig. S1(a). 𝜔(𝑝𝑓) = 𝜔(𝑝𝑏) always stands despite different values 

of 𝑢𝑥, indicating that there is exactly no speed difference of temperature field propagation in 

two opposite directions, i.e., no diffusive Fizeau drag. 

We further confirm Eqs. (S5a) and (S5b) by finite-element simulations. As described by 

Eq. (S5b), the spatial decay rates in two opposite directions are different if 𝑢𝑥 ≠ 0. Therefore, 

when we set 𝑢𝑥 = 0 mm/s, the forward and backward cases are the same [Fig. S1(b1)]. When 

we set 𝑢𝑥 = 5 mm/s, the forward and backward cases are nonreciprocal, which is reflected in 

the different amplitudes of wavelike temperature fields. However, there is no time difference 

between the forward and backward cases. When we further set 𝑢𝑥 = 10  mm/s, the 

nonreciprocity degree is enhanced [Fig. S1(b3)], manifesting as a larger amplitude difference 

of temperature fields. Again, no time difference appears. The analytical results described by 

Eqs. (S5a) and (S5b) are plotted with dotted curves, which are completely the same as the 

simulation results. Therefore, only the biased advection is unable to generate a speed difference, 

but it can contribute to an amplitude difference of temperature fields. In other words, it is highly 

nontrivial to reveal diffusive Fizeau drag in heat transfer due to the lack of macroscopic heat 

momentum to interact with the biased advection. 

Supplemental Note II: Method of numerical calculations 

To introduce spatial inhomogeneity to a porous medium, we keep the parameters of the 

fluid unchanged and modulate the parameters of the solid skeleton as 

 𝜌𝑠(𝜉) = 𝜌𝑠0 (1 + 𝛿𝜌cos(𝐺𝜉 + 𝜃)), (S6a) 
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 𝜅𝑠(𝜉) = 𝜅𝑠0(1 + 𝛿𝜅cos(𝐺𝜉)), (S6b) 

where 𝛿𝜌 and 𝛿𝜅 are the modulation amplitudes of the parameters of the solid skeleton with 

a definition of 𝜉 = 𝑥 + 𝜁𝑦. Therefore, the effective parameters of the inhomogeneous porous 

medium can be expressed as 

 𝜌(𝜉) = 𝜙𝜌𝑎 + (1 − 𝜙)𝜌𝑠(𝜉) = 𝜌0 (1 + Δ𝜌cos(𝐺𝜉 + 𝜃)), (S7a) 

 𝜅(𝜉) = 𝜙𝜅𝑎 + (1 − 𝜙)𝜅𝑠(𝜉) = 𝜅0(1 + Δ𝜅cos(𝐺𝜉)), (S7b) 

with definitions of Δ𝜌 = (1 − 𝜙)𝛿𝜌𝜌𝑠0/𝜌0  and Δ𝜅 = (1 − 𝜙)𝛿𝜅𝜅𝑠0/𝜅0 . The governing 

equation of heat transfer in the inhomogeneous medium can be expressed as 

 𝜌(𝜉)
𝜕𝑇

𝜕𝑡
+ 𝛁 ⋅ (𝜙𝜌𝑎𝒖𝑇 − 𝜅(𝜉)𝛁𝑇) = 0. (S8) 

We consider the upward advection with a speed of 𝑢𝑦, so Eq. (S8) can be expanded as 

 𝜌(𝜉)
𝜕𝑇

𝜕𝑡
+𝜙𝜌𝑎𝑢𝑦

𝜕𝑇

𝜕𝑦
+

𝜕

𝜕𝑥
(−𝜅(𝜉)

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(−𝜅(𝜉)

𝜕𝑇

𝜕𝑦
) = 0. (S9) 

We also consider a wavelike temperature field modulated by the Bloch function of 𝐹(𝜉), 

 𝑇 = 𝐹(𝜉)ei(𝛽𝑥−𝜔𝑡) = (∑ 𝐹𝑠e
i𝑠𝐺𝜉

𝑠 )ei(𝛽𝑥−𝜔𝑡), (S10) 

with parameters of 𝑠 = 0,±1,⋯ ,±∞ and 𝐹0 = 1. Then, we can derive the partial derivative 

of temperature concerning time or space, 

 
𝜕𝑇

𝜕𝑡
= −i𝜔(∑ 𝐹𝑠e

i𝑠𝐺𝜉
𝑠 )ei(𝛽𝑥−𝜔𝑡), (S11a) 

 
𝜕𝑇

𝜕𝑥
= i(∑ (𝛽 + 𝑠𝐺)𝐹𝑠e

i𝑠𝐺𝜉
𝑠 )ei(𝛽𝑥−𝜔𝑡), (S11b) 

 
𝜕𝑇

𝜕𝑦
= i(∑ 𝑠𝐺𝜁𝐹𝑠e

i𝑠𝐺𝜉
𝑠 )ei(𝛽𝑥−𝜔𝑡). (S11c) 

We can also rewrite the spatially-periodic parameters described by Eqs. (S7a) and (S7b) with 

Fourier expansions, 

 𝜌(𝜉) = ∑ 𝜌𝑟e
i𝑟𝐺𝜉

𝑟=0,±1 , (S12a) 

 𝜅(𝜉) = ∑ 𝜅𝑟e
i𝑟𝐺𝜉

𝑟=0,±1 , (S12b) 
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with definitions of 𝜌±1 = e±i𝜃𝜌0Δ𝜌/2 and 𝜅±1 = 𝜅0Δ𝜅/2. We can further obtain 

 𝜌(𝜉)
∂𝑇

𝜕𝑡
= −i𝜔(∑ ∑ 𝜌𝑟𝐹𝑠−𝑟e

i𝑠𝐺𝜉
𝑟=0,±1𝑠 )ei(𝛽𝑥−𝜔𝑡), (S13a) 

 𝜙𝜌𝑎𝑢𝑦
𝜕𝑇

𝜕𝑦
= i𝜙𝜌𝑎𝑢𝑦(∑ 𝑠𝐺𝜁𝐹𝑠e

i𝑠𝐺𝜉
𝑠 )ei(𝛽𝑥−𝜔𝑡), (S13b) 

 −𝜅(𝜉)
∂𝑇

𝜕𝑥
= −i(∑ ∑ 𝜅𝑟(𝛽 + (𝑠 − 𝑟)𝐺)𝐹𝑠−𝑟e

i𝑠𝐺𝜉
𝑟=0,±1𝑠 )ei(𝛽𝑥−𝜔𝑡), (S13c) 

 −𝜅(𝜉)
∂𝑇

𝜕𝑦
= −i(∑ ∑ 𝜅𝑟(𝑠 − 𝑟)𝐺𝜁𝐹𝑠−𝑟e

i𝑠𝐺𝜉
𝑟=0,±1𝑠 )ei(𝛽𝑥−𝜔𝑡). (S13d) 

We can further derive 

 
∂

𝜕𝑥
(−𝜅(𝜉)

∂𝑇

𝜕𝑥
) = (∑ (𝛽 + 𝑠𝐺)∑ 𝜅𝑟(𝛽 + (𝑠 − 𝑟)𝐺)𝐹𝑠−𝑟e

i𝑠𝐺𝜉
𝑟=0,±1𝑠 )ei(𝛽𝑥−𝜔𝑡), (S14a) 

 
∂

𝜕𝑦
(−𝜅(𝜉)

∂𝑇

𝜕𝑦
) = (∑ 𝑠𝐺𝜁 ∑ 𝜅𝑟(𝑠 − 𝑟)𝐺𝜁𝐹𝑠−𝑟e

i𝑠𝐺𝜉
𝑟=0,±1𝑠 )ei(𝛽𝑥−𝜔𝑡). (S14b) 

Finally, we can express the component form of Eq. (S9) as 

 −i𝜔(∑ 𝜌𝑟𝐹𝑠−𝑟𝑟=0,±1 ) + i𝜙𝜌𝑎𝑢𝑦𝑠𝐺𝜁𝐹𝑠 

 +(𝛽 + 𝑠𝐺)∑ 𝜅𝑟(𝛽 + (𝑠 − 𝑟)𝐺)𝐹𝑠−𝑟𝑟=0,±1 + 𝑠𝐺𝜁 ∑ 𝜅𝑟(𝑠 − 𝑟)𝐺𝜁𝐹𝑠−𝑟𝑟=0,±1 = 0. (S15) 

To derive the numerical results, we consider the parameters of 𝑠 = 0,±1,⋯ ,±10, and 

𝐹|𝑠|>10 = 0  in Eq. (S15), and then obtain twenty-one equations with twenty-one unknown 

numbers of 𝛽 and 𝐹|𝑠|≤10. Due to the assumption of Re[𝛽] ≪ 𝐺, we do not need to linearly 

combine the solutions to 𝛽  because the lattice effect is too weak to affect the intrinsic 

wavenumber of the wavelike temperature field. In other words, it is reasonable to choose the 

solution with the main effect and neglect the others. After obtaining the value of 𝛽, we can 

further calculate the propagating speed of wavelike temperature fields by 𝑣 = 𝜔/Re[𝛽] and 

derive the speed ratio of 𝜂 = |𝑣𝑓/𝑣𝑏| = |Re[𝛽𝑏]/Re[𝛽𝑓]|. 

Supplemental Note III: Critical point of 𝚲 = 𝟏 

We have revealed that Λ = Δ𝜌cos𝜃/Δ𝜅 = 1 is the critical point for the transition between 

types I and II in the main text, which is also robust against different 𝜁 = 𝑑/ℎ. Therefore, we 
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discuss in detail what happens at the critical point of Λ = 1 and focus on the dimensionless 

thermal diffusivity of �̅�(𝜉), 

 �̅�(𝜉) = 𝐷(𝜉)/𝐷0 =
1+Δ𝜅cos(𝐺𝜉)

1+Δ𝜌cos(𝐺𝜉+𝜃)
, (S16) 

with a definition of 𝐷(𝜉) = 𝜅(𝜉)/𝜌(𝜉). Since the vertical advection is applied, we focus on 

the effective dimensionless thermal diffusivity of �̅�𝑒 in the vertical direction, which can be 

calculated by the series connection, 

 �̅�𝑒 =
1

1

ℎ
∫

𝑑𝑦

�̅�(𝜉)

ℎ

0

=
1

1

ℎ
∫

1+Δ𝜌cos(𝐺𝜉+𝜃)

1+Δ𝜅cos(𝐺𝜉)
𝑑𝑦

ℎ

0

=
1

1+(Λ−1)(1−(1−Δ𝜅
2)

−1/2
)
. (S17) 

A feature of Eq. (S17) is that Λ = 1  always leads to �̅�𝑒 = 1 , indicating that the effective 

thermal diffusivity after spatial modulations is equal to the thermal diffusivity without spatial 

modulations. This feature provides a hint to explain the critical point of Λ = 1. Moreover, the 

�̅�𝑒 − Λ  curves are also plotted in Fig. S2, which are overlapped except for the different 

domains induced by different values of Δ𝜌, so Λ is a meaningful parameter indeed. 

Supplemental Note IV: Mechanism of diffusive Fizeau drag 

We discuss the underlying mechanism based on the analytical results with two 

approximations. The first one is to consider 𝑠 = 0,±1 and 𝐹|𝑠|>1 = 0 in Eq. (S15), and then 

we can derive three equations from Eq. (S15), 

 −i𝜔(𝜌0𝐹0 + 𝜌+1𝐹−1 + 𝜌−1𝐹+1) 

 +𝛽(𝜅0𝛽𝐹0 + 𝜅+1(𝛽 − 𝐺)𝐹−1 + 𝜅−1(𝛽 + 𝐺)𝐹+1) = 0, (S18a) 

−i𝜔(𝜌0𝐹+1 + 𝜌+1𝐹0) + i𝜙𝜌𝑎𝑢𝑦𝐺𝜁𝐹+1 

 +(𝛽 + 𝐺)(𝜅0(𝛽 + 𝐺)𝐹+1 + 𝜅+1𝛽𝐹0) + 𝐺2𝜁2𝜅0𝐹+1 = 0, (S18b) 

−i𝜔(𝜌0𝐹−1 + 𝜌−1𝐹0) − i𝜙𝜌𝑎𝑢𝑦𝐺𝜁𝐹−1 

 +(𝛽 − 𝐺)(𝜅0(𝛽 − 𝐺)𝐹−1 + 𝜅−1𝛽𝐹0) + 𝐺2𝜁2𝜅0𝐹−1 = 0. (S18c) 
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Then, we consider the second approximation of Re[𝛽] ≪ 𝐺 , so Eqs. (S18a)-(S18c) can be 

further reduced to 

 −i𝜔(𝜌0𝐹0 + 𝜌+1𝐹−1 + 𝜌−1𝐹+1) + 𝛽(𝜅0𝛽𝐹0 − 𝜅+1𝐺𝐹−1 + 𝜅−1𝐺𝐹+1) = 0, (S19a) 

−i𝜔(𝜌0𝐹+1 + 𝜌+1𝐹0) + i𝜙𝜌𝑎𝑢𝑦𝐺𝜁𝐹+1 

 +𝐺(𝜅0𝐺𝐹+1 + 𝜅+1𝛽𝐹0) + 𝐺2𝜁2𝜅0𝐹+1 = 0, (S19b) 

−i𝜔(𝜌0𝐹−1 + 𝜌−1𝐹0) − i𝜙𝜌𝑎𝑢𝑦𝐺𝜁𝐹−1 

 +𝐺(𝜅0𝐺𝐹−1 − 𝜅−1𝛽𝐹0) + 𝐺2𝜁2𝜅0𝐹−1 = 0. (S19c) 

The solutions to Eqs. (S19b) and (S19c) can be expressed as 

 𝐹+1 =
−𝐺𝛽𝜅+1+i𝜔𝜌+1

𝐺2(1+𝜁2)𝜅0+i𝐺𝜁𝜙𝜌𝑎𝑢𝑦
, (S20a) 

 𝐹−1 =
𝐺𝛽𝜅−1+i𝜔𝜌−1

𝐺2(1+𝜁2)𝜅0−i𝐺𝜁𝜙𝜌𝑎𝑢𝑦
. (S20b) 

The substitution of Eqs. (S20a) and (S20b) into Eq. (S19a) yields 

 −i𝜔𝜌0 + 𝛽2𝜅0 (1 −
Δ𝜅
2

2((1+𝜁2)2+𝜁2Γ2)
) 

 +𝜔2 (1+𝜁
2)𝜅0

𝜙2𝜖2𝑢𝑦
2

Δ𝜌
2Γ2

2((1+𝜁2)2+𝜁2Γ2)
+ 𝛽𝜔

𝜁𝜅0

𝜙𝜖𝑢𝑦

Δ𝜌Δ𝜅Γ
2cos𝜃

(1+𝜁2)2+𝜁2Γ2
= 0, (S21) 

with definitions of Γ = 𝜙𝜖𝑢𝑦/(𝐺𝐷0), 𝜖 = 𝜌𝑎/𝜌0, and 𝐷0 = 𝜅0/𝜌0. 

We further consider 𝑇0 = ei(𝛽𝑥−𝜔𝑡) , ∂𝑡 = −i𝜔 , and ∂𝑥 = i𝛽 , so Eq. (S21) can be 

rewritten as 

 𝜌0
∂𝑇0

𝜕𝑡
− 𝜅𝑒

∂2𝑇0

𝜕𝑥2
− 𝜎1

∂2𝑇0

𝜕𝑡2
+ 𝜎2

∂2𝑇0

𝜕𝑡𝜕𝑥
= 0, (S22) 

with the homogenized parameters expressed as 

 𝜅𝑒 = 𝜅0 (1 −
Δ𝜅
2

2((1+𝜁2)2+𝜁2Γ2)
), (S23a) 

 𝜎1 =
(1+𝜁2)𝜅0

𝜙2𝜖2𝑢𝑦
2

Δ𝜌
2Γ2

2((1+𝜁2)2+𝜁2Γ2)
, (S23b) 

 𝜎2 =
𝜁𝜅0

𝜙𝜖𝑢𝑦

Δ𝜌Δ𝜅Γ
2cos𝜃

(1+𝜁2)2+𝜁2Γ2
. (S23c) 

The homogenized equation [i.e., Eq. (S22)] does not contain any horizontal synthetic 
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advection related to the term of ∂𝑥, so the vertical advection does not affect the horizontal heat 

transfer directly. Surprisingly, there are two additional high-order terms of ∂𝑡
2 and ∂𝑡 ∂𝑥 in 

Eq. (S22). As described by the Fourier law, the constitutive relation should be 𝐽 = −𝜅𝑒𝜕𝑥𝑇0, 

where 𝐽 is the horizontal heat flux. Considering the energy conservation of heat transfer, we 

can derive 𝜌0𝜕𝑡𝑇0 + 𝜕𝑥𝐽 = 0, which further yields 𝜌0𝜕𝑡𝑇0 − 𝜅𝑒𝜕𝑥
2𝑇0 = 0. However, this is 

not the case described by Eq. (S22), so the constitutive relation described by the Fourier law 

should be modified after homogenization. According to Eq. (S22), we can rewrite the 

constitutive relation as 

 𝜏
𝜕𝐽

𝜕𝑡
+ 𝐽 = −𝜅𝑒

𝜕𝑇0

𝜕𝑥
+ 𝜎2

𝜕𝑇0

𝜕𝑡
. (S24) 

The term of 𝜏𝜕𝑡𝐽  has a mathematical correspondence to thermal relaxation [1-3] with the 

relaxation time of 𝜏 = −𝜎1/𝜌0 . The term of −𝜅𝑒𝜕𝑥𝑇0  reflects the conductive contribution 

related to the temperature gradient. Unusually, the term of 𝜎2𝜕𝑡𝑇0  demonstrates that the 

horizontal heat flux is coupled with the temperature change rate. Similar to acoustic Willis 

coupling between stress and velocity or between momentum and strain, we can attribute the 

modified constitutive relation described by Eq. (S24) to thermal Willis coupling between heat 

flux and temperature change rate. Naturally, 𝜎2𝜕𝑡𝑇0 can be referred to as the thermal Willis 

term and 𝜎2 is the thermal Willis coefficient. Thermal Willis coupling uniquely occurs in an 

inhomogeneous medium because the horizontal heat flux cannot be coupled with the 

temperature change rate in a homogeneous medium. Specifically, a macroscopically 

homogeneous medium with the parameter of 𝑑 = 0  leads to 𝜎2 = 0 , so thermal Willis 

coupling disappears. Moreover, the vertical advection is also indispensable for thermal Willis 

coupling because 𝑢𝑦 = 0 also yields 𝜎2 = 0, indicating the vanish of thermal Willis coupling. 
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Nevertheless, since Eq. (S22) is obtained from two approximations of 𝑠 = 0,±1  and 

Re[𝛽] ≪ 𝐺, the modified constitutive relation described by Eq. (S24) is also approximate, but 

it can still provide a qualitative explanation on diffusive Fizeau drag. 

To look into the speed difference generated by thermal Willis coupling, we further perform 

analytical calculations based on Eq. (S22), 

 −i𝜔𝜌0 + 𝛽2𝜅𝑒 +𝜔2𝜎1 + 𝛽𝜔𝜎2 = 0. (S25) 

We also suppose 𝛽 = 𝑝 + i𝑞, and Eq. (S25) can be rewritten as 

 −i𝜔𝜌0 + (𝑝 + i𝑞)2𝜅𝑒 +𝜔2𝜎1 + (𝑝 + i𝑞)𝜔𝜎2 = 0, (S26) 

which can be further decomposed into 

 (𝑝2 − 𝑞2)𝜅𝑒 +𝜔2𝜎1 + 𝑝𝜔𝜎2 = 0, (S27a) 

 −𝜔𝜌0 + 2𝑝𝑞𝜅𝑒 + 𝑞𝜔𝜎2 = 0. (S27b) 

The solutions to Eqs. (S27a) and (S27b) can be written as 

 𝑝𝑓,𝑏 =
−2𝜔𝜎2±√2𝛾

4𝜅𝑒
, (S28a) 

 𝑞𝑓,𝑏 = ±
√2𝛾(8𝜔2𝜅𝑒𝜎1−2𝜔

2𝜎2
2+𝛾2)

16𝜔𝜌0𝜅𝑒
2 , (S28b) 

with a definition of 𝛾 = √𝜔2(−4𝜅𝑒𝜎1 + 𝜎2
2) + √𝜔4(−4𝜅𝑒𝜎1 + 𝜎2

2)2 + 16𝜔2𝜌0
2𝜅𝑒

2 . Since 

|𝑝𝑓| and |𝑝𝑏| are two different numbers, we can observe a speed difference of temperature 

field propagation in two opposite directions. In contrast, 𝑞𝑓 and 𝑞𝑏 are always two opposite 

numbers, indicating the same spatial decay rates in two opposite directions. 

We can also calculate the wavenumber difference of ΔRe[𝛽] by 

 ΔRe[𝛽] = 𝑝𝑓 + 𝑝𝑏 = −𝜎2𝜔/𝜅𝑒. (S29) 

ΔRe[𝛽]  is in direct proportion to 𝜔 , which is in qualitative agreement with the numerical 

results shown in Fig. 3(b) in the main text. Meanwhile, ΔRe[𝛽] is crucially determined by the 
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thermal Willis coefficient of 𝜎2 . Since both 𝑢𝑦 = 0  and 𝑢𝑦 = ∞  lead to 𝜎2 = 0 , thermal 

Willis coupling vanishes accordingly. As a result, the wavenumber difference (or the speed 

difference) also disappears when 2πΓ = 0  and 2πΓ = ∞ , which agrees well with the 

numerical results shown in Fig. 2 in the main text. Therefore, the wavenumber difference (or 

the speed difference) mainly depends on thermal Willis coupling described by the term of 

𝜎2𝜕𝑡𝑇0. 

Comparing Eqs. (S5a) and (S5b) and Eqs. (S28a) and (S28b), we can draw the following 

conclusion. The horizontal advection cannot contribute to a speed difference but can lead to 

different spatial decay rates of temperature field propagation in two opposite directions. On the 

contrary, thermal Willis coupling can yield a speed difference but cannot generate different 

spatial decay rates of temperature field propagation in two opposite directions. Nevertheless, 

since the results described by Eqs. (S28a) and (S28b) are obtained from two approximations, 

slightly different spatial decay rates in two opposite directions can still be observed. 

Supplemental Note V: Another approach to generating wavelike temperature fields 

We can also generate a wavelike temperature field by setting an initial temperature of 

𝑇(𝑡 = 0) = ei𝛽𝑥, thereby resulting in a real 𝛽 and a complex 𝜔. The imaginary part of 𝜔 

reflects the temporal decay rate of wavelike temperature fields. To some extent, this approach 

has a duality to the case discussed in the main text, i.e., applying a periodic source with a 

temperature of 𝑇(𝑥 = 0) = e−i𝜔𝑡. The method to derive the numerical solution to 𝜔 is to take 

𝜔  as an unknown number instead of 𝛽  in Eq. (S15). A nonzero Re[𝜔]  indicates the 

horizontal symmetry breaking because a wavelike temperature field propagates along a specific 

direction, i.e., forward with Re[𝜔] > 0 and backward with Re[𝜔] < 0. 
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Then we discuss the real part of 𝜔, which further determines the propagating speed of 

wavelike temperature fields by 𝑣 = Re[𝜔]/𝛽 (the solid curves in Fig. S3). For comparison, 

we also plot the speed ratio of 𝜂 = |Re[𝛽𝑏]/Re[𝛽𝑓]|  with dotted curves in Fig. S3. The 

parameters for the two approaches are the same. The only difference is that we take 𝜔 as an 

unknown number and 𝛽 as a known number when calculating 𝑣, but take 𝛽 as an unknown 

number and 𝜔 as a known number when calculating 𝜂. The 𝑣 − 2πΓ curves and 𝜂 − 2πΓ 

curves in Fig. S3 have a mirror symmetry in the horizontal direction. 

Similar to the three types of 𝜂 − 2πΓ curves presented in Figs. 2(b)-2(d) in the main text, 

we also find three types of 𝑣 − 2πΓ  curves in Fig. S3(a). The first one features that 𝑣  is 

always smaller than 0 (the bottom three solid curves). The second one features that 𝑣 is first 

smaller and then larger than 0 (the fourth and fifth solid curves from the bottom). The third 

one features that 𝑣  is always larger than 0  (the top solid curve). Since 𝜃 = π/2  always 

leads to Λ = 0, the solid (or dotted) curves in Fig. S3(b) are irrelevant to Δ𝜌. We further take 

the solid and dotted curves with the parameter of Λ = 0  in Fig. S3(a) as an example to 

demonstrate the unique property of thermal Willis coupling. Due to 𝑣 > 0 , a wavelike 

temperature field propagates forward, so we may conceive that there is a forward drive in the 

system. However, 𝜂 < 1  means that the forward speed is slower than the backward one. 

Generally, if there is a forward drive in the system, the forward speed should be faster than the 

backward one. Comparing the other solid and dotted curves with the same parameter of Λ in 

Fig. S3(a) or with the same parameter of Δ𝜌  in Fig. S3(b), we can draw the following 

conclusion. If we preset a real wavenumber by constructing an initial wavelike temperature 

profile, the temperature field propagates forward (or backward). If we preset a real angular 
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frequency by applying a periodic temperature source, the forward speed is, however, slower (or 

faster) than the backward one. This contradiction demonstrates the intriguing behavior of 

thermal Willis coupling. Since thermal Willis coupling is related to the coupling between heat 

flux and temperature change rate, it is crucially dependent on the initial and boundary 

conditions. Therefore, when we use two different approaches to generate wavelike temperature 

fields, the corresponding results might also be different. 
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Fig. S1. Features of conventional heat transfer. (a) Thermal dispersion. (b1)-(b3) Evolution of 

𝑇∗ with different horizontal advection speeds. The vertical dashed line marks the temperature 

peaks. The system has translational symmetry in the vertical direction. Parameters: 𝜙 = 0.1, 

𝜖 = 1 , 𝐷0 = 5 × 10−5  m2/s, 𝑑 = 0.02  m, ℎ = 0.02  m, and 𝑡0 = 20  s. The simulation 

length is 30𝑑 = 0.6  m. The left and right boundaries are insulated. The upper and lower 

boundaries are set with periodic conditions. Sim.: Simulation; and Ana.: Analytical. 
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Fig. S2. Effective dimensionless thermal diffusivity of �̅�𝑒 in the vertical direction as a function 

of Λ = Δ𝜌cos𝜃/Δ𝜅. Λ is tuned by 𝜃. Parameters: Δ𝜅 = 0.5, 𝑑 = 0.02 m, and ℎ = 0.02 m. 
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Fig. S3. Comparison between two approaches. Velocity of 𝑣 (solid curves corresponding to 

the left axis) and speed ratio of 𝜂 (dotted curves corresponding to the right axis) as a function 

of 2πΓ = 𝜙𝜖𝑢𝑦𝑑/𝐷0 when (a) 𝜃 = 0 or (b) 𝜃 = π/2. Except the parameters presented in (a) 

and (b), the others are 𝜙 = 0.1 , 𝜖 = 1 , 𝐷0 = 5 × 10−5  m2/s, Δ𝜅 = 0.5 , 𝑑 = 0.02  m, and 

ℎ = 0.02  m. When we calculate 𝑣 = Re[𝜔]/𝛽 , 𝛽  is a known number equal to 10π  m-1. 

When we calculate 𝜂 = |Re[𝛽𝑏]/Re[𝛽𝑓]|, 𝜔 is a known number equal to π/10 rad/s. 


