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Nonlinear thermal responses in geometrically anisotropic metamaterials
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Nonlinear metamaterials have great potential in heat management, which has aroused intensive research
interest in both theory and application, especially for their response to surroundings. However, most existing
works focus on geometrically isotropic (circular) structures, limiting the potential versatile functionalities. On
the other hand, anisotropy in architecture promisingly offers an additional degree of freedom in modulat-
ing directional heat transfer. Here, we investigate nonlinear composition effects in geometrically anisotropic
(confocal elliptical) thermal medium under the framework of effective medium approximation, and deduce a
series of general formulas for quantitatively predicting nonlinearity enhancement. Enhancement coefficients
are analytically derived by the Taylor expansion method in different nonlinearity cases. In particular, we find
that some coupling conditions can greatly promote the nonlinear modulation coefficients, introducing stronger
enhancement beyond isotropic construction. Our theoretical predictions are verified by finite-element simulation,
and feasible experimental suggestions are also given. For extending these results to practical scenes, two
intelligent thermal metadevices are designed in proof of concept and demonstrated by numerical simulation. Our
works provide a unified theory for anisotropic nonlinear thermal metamaterial design and may benefit flexible
applications in self-adaptive thermal management, such as switchable cloaks, concentrators, or macroscopic
thermal diodes.
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I. INTRODUCTION

With the rapid development of artificial structure design for
manipulating and managing heat flow [1–8], various thermal
metamaterials with advanced functionalities beyond natural-
occurring materials have been achieved, such as thermal
cloaks [9–14], thermal concentrators [15–20], thermal rota-
tors [21,22], thermal camouflage [23], thermal illusion [24],
etc. However, most existing research does not take the non-
linear effect into account, that is, intrinsic parameters of
constitutive materials are temperature dependent [25,26]. The
actual physical existence is usually nonlinear or stimulus re-
sponsive, for example, the response of polarization to external
electric fields (nonlinear optics [27,28]). In analogy with non-
linear optical response, thermal conductivities of materials are
practically dependent on ambient temperature to some extent
(nonlinear thermotics [29]), which may introduce challenges
in theoretical mechanism but opportunities for developing
intelligent thermal metamaterials.

Fortunately, nonlinear transformation thermotics [30] has
been proposed for treating temperature-dependent consti-
tutive materials and inspired switchable thermal metade-
vices [31–35]. More recently, nonlinear thermotics has been
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extended to solving thermal wave-related regulation is-
sues [36–39] and nonlinear thermal conductivities of compos-
ite structures [40–43], indicating that nonlinearity in artificial
thermal systems contains fantastic physics and promising ap-
plication prospect. In particular, the core-shell structure, a
typical scheme, exhibits glorious abilities to regulate heat flow
in different directions with geometric anisotropy [44,45]. It
is determinate that combining anisotropic configurations and
nonlinearity may lead to theoretical difficulties in structure
design but serve for advanced multiple degrees of control
freedom in thermal regulation.

In this work, we investigate the nonlinearity enhancement
of confocal elliptical core-shell structures with temperature-
dependent thermal conductivities, which means that the
response of effective nonlinear thermal conductivity to tem-
perature will be enhanced [41]. The enhancement effect of
composite induced by core, shell, and background are studied,
respectively. Then, we focus on a group of specific coupling
conditions [46–48], where the properties of the core can be
extended to the entire composite. In other words, the ef-
fective thermal conductivity [31,35] of the shell will be the
same as that of the core. By applying the Taylor formula,
we expand the effective thermal conductivity of the com-
posite (in the case of two and three dimensions) to a finite
order and define the nonlinear modulation coefficient. These
theoretical results are verified by finite-element simulation.
The thermal coupling conditions require apparent negative
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conductivity [49,50], which can be effectively realized with
external heat energy. Finally, as a practical application, we
design two types of intelligent metamaterials, which can
automatically switch different functions according to exter-
nal temperature and heat flux direction. These results may
have potential application in novel thermal encoding [51] and
nonreciprocity [52] and provide guidance to other diffusive
systems, such as plasma transport [53], for achieving similar
behaviors.

II. THEORY

A. General theory for two-dimensional nonlinear enhancement

First of all, we consider a confocal core-shell ellipse struc-
ture embedded in a finite background. The semimajor and
semiminor axis lengths of core (or shell) are denoted as rc1

and rc2 (or rs1 and rs2), respectively. For materials with linear
thermal conductivities, the effective thermal conductivity of
core-shell structure can be calculated based on the effective
medium approximation as [54]

κcsi = κs
Lciκc + (1 − Lci )κs + f1(1 − Lsi )(κc − κs)

Lciκc + (1 − Lci )κs − f1Lsi(κc − κs)
, (1)

and that of core-shell structure plus background can be ex-
pressed as [58]

κei = kb
Lsiκcsi + (1 − Lsi )κb + f2(1 − Lsi )(κcsi − κb)

Lsiκcsi + (1 − Lsi )κb − f2Lsi(κcsi − κb)
, (2)

where the inner and outer area fraction can be expressed as
f1 = rc1rc2/(rs1rs2) and f2 = πrs1rs2/S0, and S0 is the total
area of background plus core and shell. Lw1 (or Lw2) is the
shape factor along the direction of semimajor (or semimi-
nor) axis, which can be defined as Lw1 = rw2/(rw1 + rw2) [or
Lw2 = rw1/(rw1 + rw2)], where the subscript w can take c or s
for core or shell. It is worth mentioning that the shape factors
satisfy Lw1 + Lw2 = 1. Its degree of deviation from 0.5 means
the flattening of an ellipse.

Then, we introduce the temperature-dependent thermal
conductivity of actual material, which usually shows a power-
law relationship between parameter and temperature. For the
sake of convenience and without loss of generality, we con-
sider three cases shown in Fig. 1, where one part of the ternary
structure has a stronger nonlinear thermal conductivity than
the others. Therefore, we regard the weaker nonlinear thermal
conductivities as temperature independent and express the
stronger nonlinear thermal conductivity as

κ̃c(T ) = κc + χcT α, (3a)

κ̃s(T ) = κs + χsT
α, (3b)

κ̃b(T ) = κb + χbT α. (3c)

Here, χc, χs, and χb are the nonlinear coefficients and α can
be any real number. It is noted that if we analogy the depen-
dence of the polarizability on the electric field intensity or its
higher-order terms described in nonlinear optics [28,55,56],
the thermal conductivity in nonlinear thermotics should be
responsive to the temperature gradient. Nevertheless, thermal
conductivities of natural materials are basically dependent on
temperature [57], generally depicted by Eqs. (3a)–(3c).

As we consider a common case that thermal conductivity is
weakly temperature-dependent, i.e., χcT α � κc, χsT α � κs,
or χbT α � κb, we can substitute Eqs. (3a)–(3c) into Eqs. (1)
and (2) separately. Then, we expand temperature-dependent
effective thermal conductivities of these three schemes up to
T α term by Taylor’s formula as

κ̃
(c)
ei (T ) = κei + χ

(c)
ei T α + O(T α ), (4a)

κ̃
(s)
ei (T ) = κei + χ

(s)
ei T α + O(T α ), (4b)

κ̃
(b)
ei (T ) = κei + χ

(b)
ei T α + O(T α ), (4c)

where χ
(c)
ei , χ

(s)
ei , and χ

(b)
ei are

χ
(c)
ei = λi1χc, (5a)

χ
(s)
ei = λi2χs, (5b)

χ
(b)
ei = λi3χb. (5c)

λ is related to geometric parameters ( f1, f2, Lci, and Lsi) and
linear thermal conductivities (κc, κs, and κb), which will be
presented hereafter.

Equations (4a)–(4c) reveal the power dependence of ef-
fective thermal conductivities of the ternary structures on
temperature. In addition, the response of conductivity to tem-
perature is weak, so we can neglect the high-order nonlinear
term [O(T α )] compared with the first-order term (T α). Then,
we can define the nonlinear modulation coefficients for non-
linear core η

(c)
i = χ

(c)
ei /χc, nonlinear shell η

(s)
i = χ

(s)
ei /χc, and

nonlinear background η
(b)
i = χ

(b)
ei /χb respectively, which are

given by

η
(c)
i = λi1, (6a)

η
(s)
i = λi2, (6b)

η
(b)
i = λi3, (6c)

To explore the nonlinear enhancement effect (η > 1), we
draw the nonlinear modulation coefficients as functions of
geometric parameters with constant κs/κc and κb/κc. Nev-
ertheless, these geometric parameters ( f1, f2, Lci, and Lsi)
are not independent of each other and cannot visually reflect
the contribution of each region (core, shell, and background).
Thus, we aim to express η by two independent geometric pa-
rameters Lc1 and Ls1. According to the definition of confocal
ellipse and shape factors, we have

r2
c1 − r2

c2 = r2
s1 − r2

s2 = c2, (7a)

Lc1 = rc2

rc1 + rc2
, (7b)

Ls1 = rs2

rs1 + rs2
, (7c)

where the core-shell structure is confocal and c is the half
focal length. Then, we can derive

rw1 =
√

c2

1 − 2Lw1
(1 − Lw1), (8a)

rw2 =
√

c2

1 − 2Lw1
Lw1, (8b)
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FIG. 1. Two-dimensional schematic diagram of the composite structure with (a1) nonlinear core, (b1) nonlinear shell, or (c1) nonlinear
background. (a2), (a3) [(b2), (b3) or (c2), (c3)] The nonlinear modulation coefficient η of (a1) [(b1) or (c1)] as a function of configuration Lc1

and Ls1. (a2), (b2), (c2) With prolate ellipse. (a3), (b3), (c3) With oblate ellipse. (a2)–(c3) The color lines in the left (or right) side show η as
a function of Lc1 (or Ls1) with constant Ls1 (or Lc1). Parameters: (a1)–(a3) κs/κc = 10 and κb/κc = 20; (b1)–(b3) κs/κc = 1/10 and κb/κc = 2;
(c1)–(c3) κs/κc = 1/10 and κb/κc = 1/20; and c2 = 4.69, χc = χs = χb = 0.001, α = 1, and background size 8×6 cm2 for (a1)–(c3).

f1 = (1 − 2Ls1)(1 − Lc1)Lc1

(1 − 2Lc1)(1 − Ls1)Ls1
, (8c)

f2 = πc2(1 − Ls1)Ls1

(1 − 2Ls1)S0
. (8d)

Thus, we can determine the geometric parameters of three
schemes by dimensionless parameters, i.e., Lc1 and Ls1. Fig-
ure 1 visually shows the modulation coefficient η as a function
of Lc1 and Ls1 when c and S0 are fixed. The prolate and oblate
confocal ellipse structures are applied in Figs. 1(a2)–1(c2) and
1(a3)–1(c3), respectively. It is clear that η can exceed 1 under
certain thermal conductivity and geometry of the composite.
In other words, the nonlinear item can be enhanced by mixing
different materials.

Since Eq. (6) is too complicated in detailed form, we
mainly use Fig. 1 to predict the value of η. In addi-
tion, we can choose certain conditions to simplify Eq. (6),
i.e., coupling conditions. Furthermore, the conditions can
help us compare the overall nonlinear enhancement more
fairly. The effective thermal conductivity of core-shell struc-
ture is equal to that of the core and background when
the coupling condition of thermal conductivity is satisfied,
namely,

κc = κb, (9a)

κc = −1 − Lci − (1 − Lsi ) f

Lci − Lsi f
κs. (9b)
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FIG. 2. Two-dimensional schematic diagram of the composite structure with (a1) nonlinear core, (b1) nonlinear shell, or (c1) nonlinear
background under the coupling condition. (a2), (a3) [(b2), (b3) or (c2), (c3)] The nonlinear modulation coefficient η of (a1) [(b1) or (c1)] as
a function of configuration Lc1 and Ls1. (a2), (b2), (c2) With prolate ellipse. (a3), (b3), (c3) With oblate ellipse. (a2)–(c3) The color lines in
the left (or right) side show η as a function of Lc1 (or Ls1) with constant Ls1 (or Lc1). Parameters: c2 = 4.69, and background size 8×6 cm2 for
(a1)–(c3).

If we apply the coupling conditions, the nonlinear modulation
coefficient can be rewritten as

η
(c)
i = πc2(1 − Ls1)2(1 − 2Lc1)L2

s1

(1 − 2Ls1)2(1 − Lc1)Lc1S0
, (10a)

η
(s)
1 = πc2(1 − Ls1)2(Ls1 − Lc1)(1 − Lc1 − Ls1 + 2Lc1Ls1)

(1 − 2Ls1)2L2
c1S0

,

(10b)

η
(s)
2 = πc2L2

s1(Ls1 − Lc1)(1 − Lc1 − Ls1 + 2Lc1Ls1)

(1 − 2Ls1)2(1 − Lc1)2S0
, (10c)

η
(b)
i = 1 − πc2(1 − Ls1)Ls1

(1 − 2Ls1)S0
, (10d)

which shows the direct relationship between η and geometric
parameters.

So far, we have deduced η by four independent parameters
c2, Lc1, Ls1, and S0. Figure 2 visually indicate the modulation
coefficient η as a function of Lc1 and Ls1 when c and S0

are fixed. The prolate (or oblate) confocal ellipse structure
is applied in Figs. 2(a2)–2(c2) [or Figs. 2(a3)–2(c3)], where
the left side (or the right side) displays η as a function of
Lc1 (or Ls1) when Ls1 (or Lc1) takes different values. Appar-
ently, the nonlinear modulation coefficients can be increased
by an order of magnitude under the coupling conditions. It
is worth mentioning that the conclusions of two-dimensional
case can also be extended to three dimensions, which are
discussed below.
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FIG. 3. Three-dimensional schematic diagram of the composite structure with (a1) nonlinear core, (b1) nonlinear shell, or (c1) nonlinear
background. (a2), (a3) [(b2), (b3) or (c2), (c3)] The nonlinear modulation coefficient η of (a1) [(b1) or (c1)] as a function of configuration
Lc1 and Ls1. (a2), (b2), (c2) With prolate ellipsoid. (a3), (b3), (c3) With oblate ellipsoid. (a2)–(c3) The color lines in the left (or right) side
show η as a function of Lc1 (or Ls1) with constant Ls1 (or Lc1). Parameters: (a1)–(a3) κs/κc = 10 and κb/κc = 20; (b1)–(b3) κs/κc = 1/10 and
κb/κc = 2; (c1)–(c3) κs/κc = 1/10 and κb/κc = 1/20; and c2 = 4.69, χc = χs = χb = 0.001, α = 1, and background size 8×6×6 cm3 for
(a1)–(c3).

B. General theory for three-dimensional
nonlinear enhancement

We extend the conclusions of confocal ellipse structure
from two-dimensional to three-dimensional case. We consider
a confocal rotational ellipsoid structure embedded in a finite
background [Fig. 3], where rw1 � rw2 = rw3 for prolate ellip-
soids and rw1 = rw3 � rw2 for oblate spheroids. The subscript
w can take c or s, representing the core or shell. The forms of
effective thermal conductivities for core-shell structure [54]
and core-shell structure plus background [58] are still appli-
cable, which are, respectively, represented as

κcsi = κs
Lciκc + (1 − Lci )κs + f1(1 − Lsi )(κc − κs)

Lciκc + (1 − Lci )κs − f1Lsi(κc − κs)
. (11)

κei = kb
Lsiκcsi + (1 − Lsi )κb + f2(1 − Lsi )(κcsi − κb)

Lsiκcsi + (1 − Lsi )κb − f2Lsi(κcsi − κb)
, (12)

where volume fraction f1 = rc1rc2rc3/(rs1rs2rs3), f2 =
4πrs1rs2rs3/3V0, and V0 is the volume of background plus
core and shell. The shape factor Lwi is generally defined as

Lwi =
∏

j

rw j

∫ ∞

ρw

(
ρ1 + r2

ci

)−1 ∏
k

(ρ1 + rck )−
1
2 dρ1/2, (13)

For prolate ellipsoids, the expressions of shape factors are
reduced to

Lw1 = 1 − ε2

ε2

{
1

2ε
ln

(
1 + ε

1 − ε

)
− 1

}
, (14a)

Lw2 = Lw3 = (1 − Lw1)/2 (14b)
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where ε =
√

1 − (rw2/rw1)2. While for oblate ellipsoids, they
are reduced to

Lw2 = 1 − 2Lw1 = 1

ε2

{
1 −

√
1 − ε2

ε
arcsin ε

}
, (15a)

Lw1 = Lw3 = (1 − Lw2)/2. (15b)

Moreover, if we take rw3 → ∞, the shape factors can be
reduced to handle the cylindrical (two-dimensional) case, that

is, Lw1 = rw2/(rw1 + rw2) and Lw2 = rw1/(rw1 + rw2). When
one of the ternary components is temperature dependent,
namely,

κ̃c(T ) = κc + χcT α, (16a)

κ̃s(T ) = κs + χsT
α, (16b)

κ̃b(T ) = κb + χbT α, (16c)

we can expand temperature-dependent effective thermal con-
ductivities of three schemes up to T α term by Taylor’s
formula,

η
(c)
i = λi1 = f1 f2k2

bk2
s

(φi1 + φi2)2 , (17a)

η
(s)
i = λi2 = f2k2

b (φi3 + φi4)

(φi1 + φi2)2
, (17b)

η
(b)
i = λi3 = φi5(φi6 + φi7) + (φi8 + φi9 + φi10)(φi11 + φi12 + φi13 + φi14)

(φi1 + φi2)2
. (17c)

The parameters φi1 − φi14 are related to thermal conductivities (i.e., κc, κs, and κb), area fractions (i.e., f1 and f2), and shape
factors (i.e., Lci and Lsi), which are shown in what follows as

φi1 = (1 − f2)Lsiks[Lciκc + (1 − Lci )κs + f1(1 − Lsi )(κc − κs)], (18a)

φi2 = [ f2 + (1 − f2)(1 − Lsi )]kb[Lciκc + (1 − Lci )κs − f1Lsi(κc − κs)], (18b)

φi3 = − f1κcκs, (18c)

φi4 = [Lciκc + (1 − Lci )κs + f1(1 − Lsi )(κc − κs)][Lciκc + (1 − Lci )κs − f1Lsi(κc − κs)], (18d)

φi5 = −[1 + Lsi(−1 + f2)]κb((Lci − Lsi f1)(κc − κs) + κs), (18e)

φi6 = (1 − Lsi )(1 − f2)κb[(Lci − Lsi f1)(κc − κs) + κs], (18f)

φi7 = [Lsi(−1 + f2) − f2]κs[(Lci + f1 − Lsi f1) + κs], (18g)

φi8 = κbκs + Lsi(−1 + f2)(κb − κs)κs, (18h)

φi9 = L2
si f1(−1 + f2)(κb − κs)(κs − κc) − Lsi f1(κc − κs)[κb + (−1 + f2)κs], (18i)

φi10 = Lci(κc − κs)[κb + Lsi(−1 + f2)κb − Lsi(−1 + f2)κs], (18j)

φi11 = −2(−1 + Lsi )Lsi f1(−1 + f2)κbκc, (18k)

φi12 = κs(−1 + Lsi )[2(1 + Lsi f1)(−1 + f2)κb + f 1(−Lsi + (−1 + Lsi ) f2)κc], (18l)

φi13 = −[1 + (−1 + Lsi ) f1][Lsi(−1 + f2) − f2]κ2
s , (18m)

φi14 = Lci(κc − κs)[2(−1 + Lsi )(−1 + f2)κb + (Lsi + f2 − Lsi f2)κs]. (18n)

It is noticed that f1, f2 are area fractions and shape fac-
tors Lw1 = rw2/(rw1 + rw2) [or Lw2 = rw1/(rw1 + rw2)] in the
two-dimensional case. As far as rotating prolate and oblate
ellipsoids are concerned, the relationships between shape fac-
tors Lwi and semiaxis lengths rwi are defined by Eqs. (14)
and (15), which are too complex to do reparameterization
for three-dimensional structure. However, the nonlinear mod-
ulation coefficients are still indirectly dependent on shape
factors. Figure 3 visually shows the modulation coefficient
η as a function of Lc1 and Ls1 when c and S0 are fixed. The
prolate and oblate confocal ellipsoid structures are applied in
Figs. 3(a2)–3(c2) and 3(a3)–3(c3), respectively.

Similarly, we introduce the coupling conditions for the
three-dimensional case as

κc = κb, (19a)

κc = −1 − Lci − (1 − Lsi ) f

Lci − Lsi f
κs. (19b)

then Eq. (17) can be reduced to

η
(c)
i = f2

f1
, (20a)

η
(s)
i = f2( f1 − 1)[(1 − Lsi ) f1 − (1 − Lci )]

f1(Lci − Lsi f1)
, (20b)

η
(b)
i = 1 − f2. (20c)

Figure 4 visually shows the modulation coefficient η as a
function of Lc1 and Ls1 when c and S0 are fixed. The prolate (or
oblate) confocal ellipsoid structure is applied in Figs. 4(a2)–
4(c2) [or Figs. 4(a3)–4(c3)], where the left side (or the right
side) displays η as a function of Lc1 (or Ls1) when Ls1 (or Lc1)
take different values.
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FIG. 4. Three-dimensional schematic diagram of the composite structure with (a1) nonlinear core, (b1) nonlinear shell, or (c1) nonlinear
background under the coupling condition. (a2), (a3) [(b2), (b3) or (c2), (c3)] The nonlinear modulation coefficient η of (a1) [(b1) or (c1)] as a
function of configuration Lc1 and Ls1. (a2), (b2), (c2) With prolate ellipsoid. (a3), (b3), (c3) With oblate ellipsoid. (a2)–(c3) The color lines in
the left (or right) side show η as a function of Lc1 (or Ls1) with constant Ls1 (or Lc1). Parameters: c2 = 4.69, and background size 8×6×6 cm3

for (a1)–(c3).

III. FINITE-ELEMENT SIMULATIONS FOR VERIFYING
THEORETICAL PREDICTIONS

Here, we propose a framework to confirm our theoretical
predictions in the two-dimensional case by finite-element sim-
ulation (COMSOL Multiphysics). Without loss of generality,
we consider a prolate confocal ellipse structure embedded
in a finite background. The left and right boundaries are
set at 373 K and 273 K, respectively. The upper and lower
boundaries are adiabatic. The key point is to obtain the nonlin-
ear modulation coefficient of the structure. For this purpose,
we calculate the effective thermal conductivity by κ̃ei(T ) =
〈J〉/|�T0|, where 〈J〉 is the overall average heat flux extracted
from COMSOL Multiphysics, |�T0| is equal to the absolute
value of the temperature difference between the left and right

boundary heat sources. Then, we can derive the nonlinear
modulation coefficient by η(c) = (κ̃ (c)

ei (T ) − κei )/χcT α .
Figure 5 displays the variation trend (the blue dash lines

and blue dash-dot lines) of area fraction with shape fac-
tor. We can see as the shape factor Lc1 increases, the area
fraction f1 increases monotonically. And as the shape fac-
tor Ls1 increases, the area fraction f1 (or f2) decreases (or
increases) monotonically. Then, we compare the theoretical
curves (the red solid lines) with the simulation results (the
red triangles) in the general case. The left (or right) column
represents η as a function of Lc1 (Ls1) with constant Ls1

(or Lc1). When η > 1, we say that nonlinear enhancement
has occurred, namely, χ

(c)
ei > χc, χ

(s)
ei > χs or χ

(b)
ei > χb. As

shown in Fig. 5, the nonlinear modulation coefficient is larger
than the dashed black line (η = 1), which indicates that η
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FIG. 5. The nonlinear modulation coefficients η predicted by
Eq. (6) (red solid lines) are compared with the two-dimensional
simulation results (red triangles). The nonlinear enhancement
occurs with η larger than 1 (black dash lines). The varia-
tion trends of area fraction f1 (blue dash-dot lines) and f2

(blue dash lines) with shape factors are also plotted respec-
tively. (a1)–(a2) With nonlinear core. (b1)–(b2) With nonlinear
shell. (c1)–(c2) With nonlinear background. Parameters: (a1),
(b1), (c1) Ls1 = 0.424; (a2), (b2), (c2) Lc1 = 0.333; (a1)–(a2)
κ̃c(T ) = 10 + 0.001T W m−1 K−1, κs = 100 W m−1 K−1, and
κb = 200 W m−1 K−1; (b1)–(b2) κc = 100 W m−1 K−1, κ̃s(T ) =
10 + 0.001T W m−1 K−1, and κb = 200 W m−1 K−1; (c1)–
(c2) κc = 200 W m−1 K−1, κs = 20 W m−1 K−1, and κb = 10 +
0.001T W m−1 K−1; and c2 = 4.69 and background size 8×6 cm2

for (a1)–(c2).

can be enhanced in the general case. Similarly, it can be seen
from Fig. 6 that η is a function of Lc1 or Ls1 in the coupling
condition. The simulation results agree well with theoretical
predictions, which validates Eqs. (6) and (10). When the
appropriate physical parameters are selected, the nonlinear
thermal conductivity can be enhanced to one or two orders of
magnitude.

In the same way, we take advantage of finite-element sim-
ulations (COMSOL Multiphysics) to confirm our theoretical
predictions in the three-dimensional case. Without loss of
generality, we consider a prolate confocal ellipsoid structure
embedded in a finite background. The left and right bound-
aries are set at 373 K and 273 K, respectively. The upper,
lower, front, and back boundaries are adiabatic. To measure
the nonlinear modulation coefficient η, we calculate the effec-
tive thermal conductivity by κ̃ei(T ) = 〈J〉/|�T0|. Here, 〈J〉 is
the overall average heat flux obtained from COMSOL Multi-
physics, |�T0| is equal to the absolute value of the temperature
difference between the left and right boundary heat sources.

FIG. 6. The nonlinear modulation coefficients η predicted by
Eq. (10) (red solid lines) are compared with the two-dimensional
simulation results (red triangles). The nonlinear enhancement occurs
with η larger than 1 (black dash lines). The variation trends of
area fraction f1 (blue dash-dot lines) and f2 (blue dash lines) with
shape factors are also plotted respectively. (a1)–(a2) With nonlin-
ear core. (b1)–(b2) With nonlinear shell. (c1)–(c2) With nonlinear
background. Parameters: (a1), (b1), (c1) Ls1 = 0.409; (a2), (b2),
(c2) Lc1 = 0.252; (a1)–(a2) κ̃c(T ) = 400 + 0.01T W m−1 K−1 and
κb = 400 W m−1 K−1; (b1)–(b2) κc = κb = 400 W m−1 K−1 and
κ̃s(T ) = κs + 0.004T W m−1 K−1; (c1)–(c2) κc = 400 W m−1 K−1

and κb = 400 + 0.01T W m−1 K−1; and c2 = 4.69, background size
8×6 cm2, and κs is determined by Eq. (19) for (a1)–(c2).

Then, we can derive the nonlinear modulation coefficient
by η(c) = (κ̃ (c)

ei (T ) − κei )/χcT α .
The theoretical predictions (the red triangles) in the general

case and coupling conditions are respectively displayed in
Figs. 7 and 8. The left (or right) column represents η as a
function of Lc1 (Ls1) with constant Ls1 (or Lc1). The simu-
lation results (the red triangles) agree well with theoretical
predictions (the red solid lines), which validates Eqs. (17)
and (20). When the nonlinear modulation coefficient (the red
solid lines) is larger than 1 (the black dash lines), we say that
the nonlinear enhancement has occurred. As shown in Figs. 7
and 8, we can draw a conclusion that η can be enhanced
in the general case and coupling conditions. In addition, the
variation trend (the blue dash lines and blue dash-dot lines) be-
tween area fraction and shape factors in the three-dimensional
case is the same as that in the two-dimensional case,
though we can not directly write the relationship between
them.
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FIG. 7. The nonlinear modulation coefficients η predicted by
Eq. (17) (red solid lines) are compared with the three-dimensional
simulation results (red triangles). The nonlinear enhancement oc-
curs with η larger than 1 (black dash lines). The variation trends
of area fraction f1 (blue dash-dot lines) and f2 (blue dash lines)
with shape factors are also plotted respectively. (a1)–(a2) With
nonlinear core. (b1)–(b2) With nonlinear shell. (c1)–(c2) With non-
linear background. Parameters: (a1), (b1), (c1) Ls1 = 0.242; (a2),
(b2), (c2) Lc1 = 0.174; (a1)–(a2) κ̃c(T ) = 10 + 0.001T W m−1 K−1,
κs = 100 W m−1 K−1, and κb = 200 W m−1 K−1; (b1)–(b2)
κc = 100 W m−1 K−1, κ̃s(T ) = 10 + 0.001T W m−1 K−1, and
κb = 200 W m−1 K−1; (c1)–(c2) κc = 200 W m−1 K−1, κs =
20 W m−1 K−1, and κb = 10 + 0.001T W m−1 K−1; and c2 = 4.69
and background size 8×6 cm2 for (a1)–(c2).

IV. TWO APPLICATION SCHEMES UNDER
THEORETICAL FRAMEWORKS

A. Temperature switching device: Cloaking at high temperature
and concentrating at low temperature

By introducing temperature-dependent parameters, an
additional degree of control freedom is achieved for manip-
ulating heat flux. Here, we design two kinds of intelligent
(switchable) thermal devices based on the proposed theory.
We consider the effective nonlinear thermal conductivity due
to thermal radiation. According to the Rosseland diffusion
approximation, thermal radiation is of T 3 temperature depen-
dence. In a passive and steady process of heat transfer, the
total heat flux Jtotal (consisting of the conductive flux Jcon and
the radiative flux Jrad) is divergency free:

� · (Jcon + Jrad) = 0. (21)

The conductive flux is determined by the Fourier law:
Jcon = −κ�T and the radiative flux is given by the

FIG. 8. The nonlinear modulation coefficients η predicted by
Eq. (20) (red solid lines) are compared with the three-dimensional
simulation results (red triangles). The nonlinear enhancement occurs
with η larger than 1 (black dash lines). The variation trends of
area fraction f1 (blue dash-dot lines) and f2 (blue dash lines) with
shape factors are also plotted respectively. (a1)–(a2) With nonlin-
ear core. (b1)–(b2) With nonlinear shell. (c1)–(c2) With nonlinear
background. Parameters: (a1), (b1), (c1) Ls1 = 0.272; (a2), (b2),
(c2) Lc1 = 0.243; (a1)–(a2) κ̃c(T ) = 400 + 0.004T W m−1 K−1 and
κb = 400 W m−1 K−1; (b1)–(b2) κc = κb = 400 W m−1 K−1 and
κ̃s(T ) = κs + 0.004T W m−1 K−1; (c1)-(c2) κc = 400 W m−1 K−1

and κb = 400 + 0.004T W m−1 K−1; and c2 = 4.69, background
size 8×6×6 cm3, and κs is determined by Eq. (19) for (a1)–(c2).

Rosseland diffusion approximation: Jrad = −γ T 3�T . Here,
γ = 16τ−1n2σ/3, τ is the Rosseland mean extinction co-
efficient, n is the relative refractive index, and σ is the
Stefan-Boltzmann constant (5.67× 10−8 W m−2 K−4). Then,
Eq. (21) can be rewritten as

� · [(κ + γ T 3)�T ] = 0. (22)

Therefore, we can treat the radiation-conduction process as
the heat conduction process with nonlinear thermal conduc-
tivity, namely, κ̃ (T ) = κ + γ T 3. Then, we design intelligent
radiation devices, which can achieve thermal concentrat-
ing at low temperature [Fig. 9(a)] and thermal cloaking
at high temperature [Fig. 9(b)]. The heat conduction dom-
inates when the temperature is low, so the total thermal
conductivity only retains the linear term. Since the total
thermal conductivity of the core is less than that of the
background, the function of thermal concentrator will be
realized. The thermal radiation is dominant when the tem-
perature is high, so the total thermal conductivity only
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FIG. 9. (a) Thermal cloaking at low temperature. (b) Thermal
concentrating at high temperature. Parameters: (a)–(b) rc1 = 2.5 cm,
rc2 = 1.25 cm, rs1 = 3 cm, rs2 = 2.08 cm, rt = 3.5 cm, rt2 = 2.75 cm,
background size 10×10 cm2, κ̃c(T ) = 1 + 10−1T 3 W m−1 K−1, κs =
50 W m−1 K−1, κ̃t (T ) = 200 + 5×10−3T 3 W m−1 K−1, and κ̃b(T ) =
300 + 1.3×10−3T 3 W m−1 K−1.

retains the nonlinear term. The core is wrapped by the first
shell with a thermal conductivity close to zero, so the heat
flux is prevent from entering the core. In addition, the sec-
ond shell makes the effective thermal conductivity of the
multilayer structure equal to that of the background so that
the background isotherm is not disturbed, achieving thermal
cloaking.

B. Direction switching cloak and concentrator: Open
in a specific direction and closed in the opposite direction

Two steady states are necessary for switchable functional-
ities. A common method in macroscopic system is adopting
phase-change materials [35], which are also regarded as
nonlinear thermal materials. Here, based on the theory of
nonlinearity enhancement, we introduce another asymmetric
distribution of thermal conductivity to realize the unidirec-
tional thermal concentrator and thermal cloak. These direction
switching devices will be open in a specific direction and
closed in the opposite direction.

In Figs. 10(a)–10(c), the device has a linear core and a
nonlinear shell. To achieve the effect of switching, we split
the shell into two parts [Fig. 10(a)]. The thermal conductivity
of the left (or right) part is positively (or negatively) correlated
with temperature. Therefore, the effective thermal conductiv-
ity of the core-shell structure will be different with two heat
fluxes in opposite directions. When the heat flux flows from
left to right [Fig. 10(b)], the isotherms inside the device are
bent and compressed to the center. Meanwhile, the isotherms
outside the device are straight, yielding the phenomenon of
thermal concentrator (open state). On the contrary, if the heat
flux goes from right to left [Fig. 10(c)], the effective thermal
conductivity of the core-shell structure will change greatly.
Thus, the isotherms outside the device are disturbed and the
device turns to the closed state.

Besides, in Figs. 10(d)–10(f), we consider a split nonlinear
core and a linear shell [Fig. 10(d)]. Similarly, the cloak is open

FIG. 10. Direction switching thermal devices. (a) Schematic diagram of thermal concentrator with split nonlinear shell. (b)–(c) The
simulation results corresponding to (a). (d) Schematic diagram of thermal cloak with split nonlinear core. (e)–(f) The simulation results
corresponding to (d). Parameters: (a)–(c) κc = 400 W m−1 K−1, κ̃sl (T ) = 25 + 0.25×10−3T 3 W m−1 K−1, κ̃sr (T ) = 25 − 0.25T W m−1 K−1,
κb = 100 W m−1 K−1; (d)–(f) κ̃cl (T ) = 100 + 3T W m−1 K−1, κ̃cr (T ) = 100 − 3T W m−1 K−1, κs = 250 W m−1 K−1, κb = 200 W m−1 K−1;
and rc1 = 2.5 cm, rc2 = 1.25 cm, rs1 = 3 cm, rs2 = 2.08 cm for (a)–(e).

044203-10



NONLINEAR THERMAL RESPONSES IN GEOMETRICALLY … PHYSICAL REVIEW E 106, 044203 (2022)

FIG. 11. (a) Aimed simulation result with negative thermal conductivity. (b) and (c) Achieve the same effect as panel (a) with point heat
sources whose temperatures are shown in Tables I and II. The shell region is composed of a brass plate (109 W m−1 K−1) drilled with 948
air circles with a radius of 0.04 cm, providing a thermal conductivity of 37 W m−1 K−1 for (c). Other parameters: (a) κs = −37 W m−1 K−1;
(b) κs = 37 W m−1 K−1; and rc1 = 2.5 cm, rc2 = 1.25 cm, rs1 = 3 cm, rs2 = 2.08 cm, κc = κb = 109 W m−1 K−1 for (a)–(c).

for flux flowing from left to right and closed for flux going
from right to left.

V. EXPERIMENTAL SUGGESTIONS FOR
PROOF-OF-PRINCIPLE VALIDATION

Existing experimental realization for nonlinear thermal
metamaterials mainly employs strongly nonlinear materi-
als such as phase-change materials [31,35]. However, their
thermal response is speedy and drastic, which may not be
applicable for the weak nonlinearity discussed in this work.
The apparent negative thermal conductivities [49,50] pro-
posed above are applied in the shell due to the coupling
condition, which cannot occur spontaneously in experiments.
By considering the uniqueness theorem, we keep the boundary
conditions in Fig. 11(b) consistent with those in Fig. 11(a).
The aimed temperature distributions with negative thermal
conductivity would be achieved without violating the second
law of thermal dynamics. To solve this problem, a series of
point heat sources are added at the inner and outer bound-
aries of the shell [Figs. 11(b) and 11(c)], and the concrete
temperatures are given in Tables I and II. We can adjust the
temperature of a series of thermostatic water baths by heat-
ing and cooling rods. Then, we connect the inner (or outer)
boundary with these thermostatic water baths by heat pipes for
realizing point heat sources. The thermal conductivity of the

TABLE I. Temperatures of point heat sources at the inner bound-
ary of the shell in Figs. 11(b) and 11(c).

Temp. Temp. Temp. Temp.
Source (K) Source (K) Source (K) Source (K)

1 293.00 10 273.08 19 293.00 28 312.92
2 290.45 11 273.48 20 295.55 29 312.52
3 287.82 12 274.67 21 298.18 30 311.33
4 285.03 13 276.75 22 300.97 31 309.25
5 282.24 14 279.06 23 303.76 32 306.94
6 279.06 15 282.24 24 306.94 33 303.76
7 276.75 16 285.03 25 309.25 34 300.97
8 274.67 17 287.82 26 311.33 35 298.18
9 273.48 18 290.45 27 312.52 36 295.55

shell in Fig. 11(b) is the opposite of that in Fig. 11(a) and the
point heat sources are added in Fig. 11(b). Nevertheless, the
temperature distributions in Figs. 11(b) and 11(a) are almost
the same, so we confirm that adding external heat sources can
realize a apparent negative thermal conductivity. Moreover,
we design a feasible scheme as an experimental suggestion
[Fig. 11(c)]. We put the left and right edges of a brass plate
(109 W m−1K −1) fabricated by laser cutting into hot (313 K)
and cold (273 K) sinks. To achieve the thermal conductivity of
the shell region in Fig. 11(b), 948 air circles with a radius of
0.04 cm are drilled on the brass, providing a thermal conduc-
tivity of 37 W m−1K −1 (calculated by Eq. (11) in Ref. [58]).
By comparing the temperature profiles in Figs. 11(a)–11(c),
we can draw a conclusion that the structure in Fig. 11(c) can
realize the effect of Fig. 11(a) in experiments.

VI. DISCUSSION AND CONCLUSION

In this work, we have discussed the nonlinearity enhance-
ment effects in geometrically anisotropic composites. By
introducing shape factors, we demonstrate a unified theory for
treating anisotropic medium. The derived results apply to the
previous isotropic cases [41] if the shape factor is taken as an
isotropic value. To vividly understand the idea of nonlinearity
enhancement, we propose a group of coupling conditions,
which can realize thermal transparency effects [54]. We

TABLE II. Temperatures of point heat sources at the outer
boundary of the shell in Figs. 11(b) and 11(c).

Temp. Temp. Temp. Temp.
Source (K) Source (K) Source (K) Source (K)

1 293.00 10 280.95 19 293.00 28 305.05
2 291.19 11 281.16 20 294.81 29 304.84
3 289.39 12 282.16 21 296.61 30 303.84
4 287.74 13 283.36 22 298.26 31 302.64
5 286.37 14 284.77 23 299.62 32 301.23
6 284.77 15 286.37 24 301.23 33 299.62
7 283.36 16 287.74 25 302.64 34 298.26
8 282.16 17 289.39 26 303.84 35 296.61
9 281.16 18 291.19 27 304.84 36 294.81
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further point out coupling conditions require negative ther-
mal conductivities, which can be effectively achieved by
external energy or thermoelectric materials in real physical
systems [10,39,59,60]. It is noted that the coupling con-
ditions may greatly increase the nonlinearity enhancement.
Spontaneous evolution inside systems can only induce weak
nonlinearity enhancement, which may hardly be observed or
utilized. On the other hand, anisotropy in architecture induces
an additional degree of freedom beyond isotropic composites,
benefiting more obvious enhancement effects. This result may
promote the application of nonlinearity enhancement in vari-
ous fields such as wavelike heat transport or thermal harmonic
generation.

To sum up, we investigate the nonlinear enhancement ef-
fect of a core-shell structure embedded in a finite background,
which may have potential applications in thermal manage-
ment. We calculate the nonlinear modulation coefficient η in
the general case and execute a reparameterization process for

characterizing it by independent geometric parameters. Then,
we consider the nonlinear enhancement effect in the coupling
condition, which is convenient for us to discuss the relation-
ship between η and the relevant parameters. Finite-element
simulations verify these theoretical results. We also provide a
feasible experimental suggestion. In addition, we design two
types of intelligent thermal devices in proof of principle for
promoting practical applications. It is promising to extend the
related mechanisms of the basic model in this work to other
anisotropic models or even multifield coupling systems.
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