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Tunable thermal wave nonreciprocity by spatiotemporal modulation
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Nonreciprocity is of particular importance to realize one-way propagation, thus attracting intensive research
interest in various fields. Thermal waves, essentially originating from periodic temperature fluctuations, are also
expected to achieve one-way propagation, but the related mechanism is still lacking. To solve the problem, we
introduce spatiotemporal modulation to realize thermal wave nonreciprocity. Since thermal waves are completely
transient, both the convective term and the Willis term induced by spatiotemporal modulation should be
considered. We also analytically study the phase difference between two spatiotemporally modulated parameters,
which offers a tunable parameter to control nonreciprocity. We further define a rectification ratio based on the
reciprocal of spatial decay rate and discuss nonreciprocity conditions accordingly. Finite-element simulations
are performed to confirm theoretical predictions, and experimental suggestions are provided to ensure the
feasibility of spatiotemporal modulation. These results have potential applications in realizing thermal detection
and thermal stabilization simultaneously.
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I. INTRODUCTION

Ever since the concept of spatiotemporal modulation was
proposed [1], intensive studies have been conducted not only
in wave systems [2–16] including photonics [2–5], acoustics
[6–9], and metasurfaces [10–12] but also in diffusion systems
[17–19]. A direct application of spatiotemporal modulation is
to realize nonreciprocity which refers to asymmetric propaga-
tion along opposite directions. Although many different kinds
of waves have been studied to achieve nonreciprocity based on
spatiotemporal modulation, thermal waves have received little
attention despite an important phenomenon. In terms of mech-
anism, thermal waves are a special kind of waves, which are
dominated by a diffusion equation (i.e., the Fourier equation),
thus also called diffusion waves [20]. In terms of applica-
tion, thermal waves can realize nondestructive detection (i.e.,
thermal wave imaging) which is widely applied in aerospace,
machinery, and electricity [21–23]. Some recent studies also
focused on diffusion waves to realize anti-parity-time symme-
try [24–27], negative thermal transport [28], cloaks [20,29–
31], and crystals [32–34].

However, a mechanism to achieve thermal wave nonre-
ciprocity is still lacking. Essentially, thermal waves can be
treated as periodic temperature fluctuations which are usually
a double-edged sword. On the one hand, they are desirable
for thermal detection. On the other hand, they are unwanted
for thermal stabilization. Therefore, it is crucially important
to realize thermal wave nonreciprocity. For this purpose, we
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explore spatiotemporal modulation to achieve thermal wave
nonreciprocity, inspired by pioneering studies on nonrecip-
rocal thermal materials [18]. It has been revealed that a
convective term appears in the conduction equation at qua-
sisteady states if thermal conductivity and mass density are
spatiotemporally modulated, thus achieving nonreciprocity.
However, the applicability for thermal waves was not dis-
cussed. On the one hand, thermal waves feature completely
transient states where the Willis term should be considered.
On the other hand, the phase difference between two spa-
tiotemporally modulated parameters remains to be explored.

In this work, we fully discuss thermal wave nonreciprocity
based on spatiotemporal modulation. Since there is a phase
difference between two spatiotemporally modulated parame-
ters, we construct two different backward cases (see Fig. 1)
which have different nonreciprocity conditions. The results
demonstrate that the phase difference offers a flexible and tun-
able parameter to control nonreciprocity. We also discuss the
heat flux to reveal the feature of spatiotemporal modulation.

II. THEORY

We consider a passive thermal conduction process in one
dimension, dominated by

ρ(x − ut )
∂T

∂t
+ ∂

∂x

[
−σ (x − ut )

∂T

∂x

]
= 0, (1)

where σ (x − ut ) is thermal conductivity and ρ(x − ut ) is the
product of mass density and heat capacity. The spatiotempo-
rally modulated parameters in Fig. 1(a) take the form of

σ (x − ut ) = σA + σB cos[K (x − ut )], (2a)

ρ(x − ut ) = ρA + ρB cos[K (x − ut ) + α], (2b)
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FIG. 1. Thermal wave nonreciprocity. (a) Forward case.
(b) Backward-1 case by changing the source position.
(c) Backward-2 case by changing the modulation direction.

where σA, σB, ρA, and ρB are four constants. K = 2π/γ is
wave number, γ is wavelength, u is modulation speed, and α is
phase difference. Since σ (x − ut ) and ρ(x − ut ) are periodic
functions, the Bloch theorem is applicable and the temperature
solution can be expressed as

T = φ(x − ut )ei(kx−ωt ), (3)

where k and ω are, respectively, the wave number and circular
frequency of a thermal wave. φ(x − ut ) is an amplitude mod-
ulation function that has the same periodicity as σ (x − ut )
and ρ(x − ut ). Equation (1) can then be homogenized with
the approximations of k � K and ω � uK [18],

ρ̃
∂T̃

∂t
+ C

∂T̃

∂x
− σ̃

∂2T̃

∂x2
− S

∂2T̃

∂x∂t
= 0, (4)

where the homogenized parameters can be expressed as

σ̃ ≈ σA

(
1 − σ 2

B

2σ 2
A

1

1 + 
2

)
, (5a)

ρ̃ ≈ ρA

(
1 − ρ2

B

2ρ2
A


2

1 + 
2

)
, (5b)

C ≈ u
σBρB

2σA

1

1 + 
2
P(α), (5c)

S ≈ 1

u

σBρB

2ρA


2

1 + 
2
Q(α), (5d)

with 
 = ρAuγ /(2πσA), P(α) = cos α + 
 sin α, and
Q(α) = cos α + 
−1 sin α. T̃ can be treated as the envelope
line of the actual temperature T . Here, we extend the results
reported in Ref. [18] by additionally considering a phase
difference of α, and the detailed derivations can be found in
the Appendix. σ̃ and ρ̃ are irrelevant to α, but C and S are
dependent on α, offering a tunable parameter.

We then qualitatively discuss the nonreciprocity induced
by spatiotemporal modulation. In what follows, the subscripts
of f , b1, and b2 denote the parameters related to the forward
case in Fig. 1(a), the backward-1 case in Fig. 1(b), and the
backward-2 case in Fig. 1(c), respectively. The two backward

cases are equivalent only when α = 0. Since σ̃ and ρ̃ do not
contribute to nonreciprocity, we mainly discuss C and S in
detail.

For the forward case, we know Cf = C and S f = S. For
the backward-1 case, we can derive Cb1 = −C and Sb1 = −S.
Nonreciprocity requires Cf �= Cb1 (or S f �= Sb1). Therefore,
as long as C �= 0 (or S �= 0), nonreciprocity will occur and a
larger C (or S) yields larger nonreciprocity. For clarity, we plot
the functions of C(α) and S(α) in Fig. 2 with 
 = 0.5, 1, 2.
The maximum and minimum values of C appear at α =
−arccot
 + π/2 and α = −arccot
 − π/2, respectively; and
the zero value occurs at α = arctan 
 ± π/2. The maximum
and minimum values of S appear at α = − arctan 
 + π/2
and α = − arctan 
 − π/2, respectively; and the zero value
occurs at α = arccot
 ± π/2. For the backward-2 case, we
can obtain Cb2 = C(−u) and Sb2 = S(−u). Nonreciprocity
requires Cf �= Cb2 (or S f �= Sb2). Therefore, as long as C(u) �=
C(−u) [or S(u) �= S(−u)], nonreciprocity will occur. We can
also observe that α = ±π/2 makes P(α) and Q(α) two odd
functions of u. C and S then become two even functions
of u, so nonreciprocity disappears. In one word, the non-
reciprocity condition for the backward-1 case is C �= 0 (or
S �= 0), and that for the backward-2 case is C(u) �= C(−u)
[or S(u) �= S(−u)]. Especially when α = 0, C(−u) = −C(u)
[or S(−u) = −S(u)], the nonreciprocity condition for the
backward-2 case can then be reduced to C �= 0 (or S �= 0),
which is the same as that for the backward-1 case.

We then consider a transient case which can support the
propagation of thermal waves. Since both C and S can con-
tribute to nonreciprocity, a qualitative analysis is not enough.
Therefore, we quantitatively discuss a rectification ratio. For
this purpose, we apply a periodic temperature at the left side
of the structure in Fig. 1(a) to generate a forward thermal
wave described by Eq. (3). The periodic temperature has a
form of Tp = φ0e−iωt + T0 where φ0 denote the temperature
amplitude. We set the reference temperature T0 = 0 K in the-
oretical discussions for brevity. The envelope line of the actual
temperature T can then be expressed as

T̃ = φ0ei(kx−ωt ). (6)

The real part of Eq. (6) makes sense, which has been exper-
imentally realized by periodically heating a material [24,25].
The substitution of Eq. (6) into Eq. (4) yields

−iωρ̃ + ikC + k2σ̃ − ωkS = 0. (7)

Since thermal conduction features dissipation, the wave num-
ber k should be complex, i.e., k = μ + iξ with μ and ξ being
two real numbers. Equation (6) can then be rewritten as T̃ =
φ0e−ξxei(μx−ωt ). Therefore, the physical meaning of μ is the
wave number and that of ξ is the spatial decay rate. With the
complex k, Eq. (7) can be further reduced to

−iωρ̃ + i(μ + iξ )C + (μ + iξ )2σ̃ − ω(μ + iξ )S = 0. (8)

By independently considering the real and imaginary parts of
Eq. (8), we can derive two equations,

−ξC + (μ2 − ξ 2)σ̃ − ωμS = 0, (9a)

ωρ̃ − μC − 2μξσ̃ + ωξS = 0. (9b)
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FIG. 2. C and S as functions of α. Parameters: σA = 300 W m−1 K−1, σB = 100 W m−1 K−1, ρA = 3 × 106 J m−3 K−1, ρB = 5 × 105 J
m−3 K−1, and u = 0.05 m/s.

The solution to Eq. (9) is

μ = 2Sω + √
2ε

4σ̃
, (10a)

ξ = −4Cω(2σ̃ ρ̃ − CS) + 2
√

2(C2 − S2ω2)ε + √
2ε3

8σ̃ (2σ̃ ρ̃ − CS)ω
,

(10b)

with ε=
√

−C2+S2ω2+
√

(C2+S2ω2)2+16ω2σ̃ ρ̃(σ̃ ρ̃−CS) .
Although Eq. (10) is complicated, we can discuss some
special conditions to have a rough idea. For the forward case,
we can know μ f = μ and ξ f = ξ . For the backward-1 case,
we can derive μb1 = μ(−C, −S) and ξb1 = ξ (−C, −S).
Due to ε(C, S) = ε(−C, −S), it does contribute to
nonreciprocity, so the nonreciprocity origins of μ and
ξ lie in S and C, respectively [see Eq. (10)]. We can
then conclude that nonreciprocal μ requires S �= 0 (i.e.,
α �= arccot
 ± π/2) and nonreciprocal ξ requires C �= 0
(i.e., α �= arctan 
 ± π/2). For the backward-2 case, we can
derive μb2 = μ[C(−u), S(−u)] and ξb2 = ξ [C(−u), S(−u)].
When α = ±π/2, C, S, and ε are all even functions of u, so
nonreciprocity will disappear. Therefore, nonreciprocal μ (or
ξ ) requires α �= ±π/2.

In general, it makes little sense to define a rectification ratio
based on wave numbers. However, it is meaningful to define
a rectification ratio (RT ) based on the temperature amplitude
(φ0e−ξx ) or the reciprocal of spatial decay rate (1/ξ ),

RT 1 = 1/ξ f − 1/ξb1

1/ξ f + 1/ξb1
= ξb1 − ξ f

ξb1 + ξ f
, (11a)

RT 2 = 1/ξ f − 1/ξb2

1/ξ f + 1/ξb2
= ξb2 − ξ f

ξb2 + ξ f
, (11b)

where RT 1 and RT 2 are defined for the backward-1 and
backward-2 cases, respectively. We plot RT 1 and RT 2 as func-
tions of α in Fig. 3. The results demonstrate that a smaller 
 or

a smaller ω yields larger nonreciprocity. Therefore, both RT 1

and RT 2 can theoretically reach 1, and we can obtain a perfect
thermal wave diode. Especially when α = 0, Eq. (11) can be
reduced to

RT 1 = RT 2 = 2
√

2Cω(2σ̃ ρ̃ − CS)

2(C2 − S2ω2)ε + ε3
, (12)

indicating that the two backward cases are equivalent when
α = 0.

Another possibility to define a rectification ratio (RJ ) lies
in nonreciprocal heat fluxes J . For this purpose, we define the
dynamic heat flux J according to Eq. (1),

J = − σ (x − ut )
∂T

∂x

= − σ (x − ut )
∂

∂x
[φ(x − ut )e−ξxei(μx−ωt )]

= − σ (x − ut )[φ′(x − ut )

+ (−ξ + iμ)φ(x − ut )]e−ξxei(μx−ωt ), (13)

where φ′(x − ut ) = ∂φ(x − ut )/∂x. Since σ (x − ut ),
φ(x − ut ), and φ′(x − ut ) are all periodic functions, the
dynamic heat flux described by Eq. (13) varies with temporal
periodicity, but the heat flux amplitude decays along the x
axis due to the term of e−ξx. Therefore, we can also define
RJ based on the reciprocal of spatial decay rate (1/ξ ) which
should have the same form as Eq. (11), indicating that the
whole theoretical framework is self-consistent.

We can then draw a brief conclusion. Spatiotemporal
modulation can generate two additional terms including the
convective term associated with C and the Willis term related
to S. Both C and S can be flexibly tuned by α. We also discuss
two backward cases: (i) changing the source position and (ii)
changing the modulation direction, which are equivalent only
when α = 0. We further discuss their nonreciprocity condi-
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FIG. 3. RT 1 and RT 2 as functions of α. The parameters are the same as those for Fig. 2.

tions and define a rectification ratio (RT or RJ ) based on the
reciprocal of spatial decay rate (1/ξ ).

III. SIMULATION

We then perform simulations with COMSOL Multiphysics
to confirm the theoretical analyses. For this purpose, we study
the thermal conduction in a one-dimensional structure whose
parameters are spatiotemporally modulated as described by
Eq. (2) with 
 = 1. To ensure accuracy, the mesh size is
1/10th of the modulation wavelength (γ ), and the time tol-
erance is 10−6.

We first discuss the backward-1 case which requires to
change the source position but keep the modulation direction
[see Fig. 1(b)]. As theoretically predicted [Eq. (11)], RT 1 = 0
occurs when α = π/4 ± π/2. For brevity, we set α = −π/4
to perform simulations. The temperature and heat flux evo-
lutions are presented in Figs. 4(a) and 4(c), respectively.
We can clearly observe that the forward and backward-1
propagations are the same, indicating reciprocal propaga-
tions. Moreover, RT 1 reaches the maximum value when α =
π/4 as predicted. We also perform simulations with α =
π/4, and the results are presented in Figs. 4(b) and 4(d).
Clearly, the temperature amplitudes are different, indicating
nonreciprocal propagations. The theoretical prediction of the
forward and backward-1 temperature amplitudes are 5.13 and
1.87 K, respectively. The simulations show that the forward
and backward-1 temperature amplitudes are 5.23 and 1.92 K,
respectively. Therefore, the simulations agree well with the
theoretical predictions.

We then discuss the backward-2 case which requires to
change the modulation direction but keep the source posi-
tion [see Fig. 1(c)]. Equation (11)] tells that RT 2 = 0 appears
when α = ±π/2, and we set α = −π/2 to perform simula-
tions [see Figs. 5(a) and 5(c)]. The forward and backward-2
propagations have the same temperature (or heat flux) ampli-

FIG. 4. Simulations of the backward-1 case. The parameters are
the same as those for Fig. 2 with 
 = 1 and L = 0.2 m. The periodic
temperature is set at Tp = 40 cos (−2πt/50) + 323 K. The detected
position locates at the center of the structure. [(a) and (b)] Tempera-
ture evolution. [(c) and (d)] Heat flux evolution.

FIG. 5. Simulations of the backward-2 case. The parameters are
the same as those for Fig. 4. The difference from Fig. 4 is that here we
change the modulation speed instead of changing the source position.
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tudes, indicating reciprocal thermal waves. In addition, RT 2

reaches the maximum value when α = 0 as predicted, and
the simulation results are presented in Figs. 5(b) and 5(d).
The theoretical prediction of the forward and backward-2
temperature amplitudes are 4.48 and 2.19 K, respectively.
The simulations demonstrate that the forward and backward-1
temperature amplitudes are 4.53 and 2.24 K, respectively.
Again, the simulations and theories have good agreement.

IV. DISCUSSION AND CONCLUSION

We finally provide some experimental suggestions to en-
sure the feasibility of practical implementations. The most
crucial is to realize spatiotemporal modulations of σ (thermal
conductivity) and ρ (the product of mass density and heat
capacity). We first discuss the spatiotemporal modulation of
σ . A large number of studies have shown that thermal con-
ductivities can be flexibly controlled by external fields like
electric fields [35,36] and light fields [37]. The in-plane ther-
mal conductivity can change two orders of magnitude with an
out-of-plane electric field [35]. We then discuss the spatiotem-
poral modulation of ρ by considering that of heat capacity.
Many materials have a phase change [38] in the presence of an
electric field, so heat capacities change with the phase change.
Therefore, spatiotemporal modulations of σ and ρ can be
realized with an electric field in principle. Moreover, Ref. [19]
also provides an insight to practical implementations, though
the experiments were conducted in electrics. Since thermotics
and electrics follow similar equations (thermal conductivity
corresponds to electric conductivity and heat capacity corre-
sponds to electric capacity), spatiotemporal modulations of σ

and ρ might also be realized by rotating disks, as presented in
Ref. [19]. A periodic temperature can be obtained by directly
using a pulse heat source or alternately using a ceramic heater
and a semiconductor cooler. Therefore, these results should
be possible to be experimentally validated. Thermal waves
discussed in this work are based on the Fourier law, and many
other kinds of thermal waves remain further explored, i.e.,
those considering thermal relaxation [39–42].

In summary, we propose the mechanism of tunable ther-
mal wave nonreciprocity with spatiotemporal modulation.
The tunability lies in the phase difference (α) between two
spatiotemporally modulated parameters. We reveal that the
homogenized thermal conductivity (σ̃ ) and the homogenized
product of mass density and heat capacity (ρ̃) are independent
of the phase difference (α), but the convective term (C) and
the Willis term (S) are crucially dependent on the phase dif-
ference (α). We also discuss two different backward cases: (i)
changing the source position and (ii) changing the modulation
direction. The two cases are equivalent only when α = 0. We
further define a rectification ratio (RT 1 or RT 2) based on the
reciprocal of spatial decay rate (1/ξ ) and discuss nonreciproc-
ity conditions. These theoretical analyses are all confirmed
by finite-element simulations, and experimental suggestions
are also given to ensure feasibility. These results broaden the
research ideas on thermal diodes [43–46], and have potential
applications in thermal camouflaging [47–50] and thermal
sensing [51–54].
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APPENDIX

We consider two variable substitutions of n = x − ut
and τ = t , yielding ∂/∂x = ∂/∂n and ∂/∂t = ∂/∂τ − u∂/∂n.
Equation (1) can then be reduced to

ρ(n)
∂T

∂τ
− uρ(n)

∂T

∂n
+ ∂

∂n

[
−σ (n)

∂T

∂n

]
= 0. (A1)

Similarly, Eq. (2) can also be simplified as

σ (n) = σA + σB cos (Kn), (A2a)

ρ(n) = ρA + ρB cos (Kn + α). (A2b)

We rewrite Eq. (A2) with the Fourier expansion,

σ (n) =
∑

s=0, ±1

σse
iKsn = σ0eiK0n + σ+1eiK+1n + σ−1eiK−1n,

(A3a)

ρ(n) =
∑

s=0, ±1

ρse
iKsn = ρ0eiK0n + ρ+1eiK+1n + ρ−1eiK−1n,

(A3b)

with K0 = 0, K±1 = ±K , σ0 = σA, σ±1 = σB/2, ρ0 = ρA, and
ρ±1 = e±iαρB/2.

With the Bloch theorem, we can express the temperature
solution as

T (n, τ ) = φ(n)ei(Gn−W τ ) =
( ∑

s=0, ±1

φse
iKsn

)
ei(Gn−W τ )

= (φ0eiK0n + φ+1eiK+1n + φ−1eiK−1n)ei(Gn−W τ ),

(A4)

where G and W are the wave number and circular frequency in
the n-τ frame and φ(n) is the amplitude modulation function.

We can then express ∂T/∂τ and ∂T/∂n as

∂T

∂τ
= −iW (φ0eiK0n + φ+1eiK+1n + φ−1eiK−1n)ei(Gn−W τ ),

(A5)

∂T

∂n
= i[(G + K0)φ0eiK0n + (G + K+1)φ+1eiK+1n

+ (G + K−1)φ−1eiK−1n]ei(Gn−W τ ). (A6)
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We can further write ρ(n)∂T/∂τ as

ρ(n)
∂T

∂τ
= −iW (ρ0φ0 + ρ+1φ−1 + ρ−1φ+1)eiK0nei(Gn−W τ )

− iW (ρ0φ+1 + ρ+1φ0)eiK+1nei(Gn−W τ )

− iW (ρ0φ−1 + ρ−1φ0)eiK−1nei(Gn−W τ )

+ o(eiK±1n). (A7)

We can also express −uρ(n)∂T/∂n and −σ (n)∂T/∂n as

−uρ(n)
∂T

∂n
= −iu[ρ0(G + K0)φ0 + ρ+1(G + K−1)φ−1 + ρ−1(G + K+1)φ+1]eiK0nei(Gn−W τ )

− iu[ρ0(G + K+1)φ+1 + ρ+1(G + K0)φ0]eiK+1nei(Gn−W τ )

− iu[ρ0(G + K−1)φ−1 + ρ−1(G + K0)φ0]eiK−1nei(Gn−W τ )

+ o(eiK±1n), (A8)

−σ (n)
∂T

∂n
= −i[σ0(G + K0)φ0 + σ+1(G + K−1)φ−1 + σ−1(G + K+1)φ+1]eiK0nei(Gn−W τ )

− i[σ0(G + K+1)φ+1 + σ+1(G + K0)φ0]eiK+1nei(Gn−W τ )

− i[σ0(G + K−1)φ−1 + σ−1(G + K0)φ0]eiK−1nei(Gn−W τ )

+ o(eiK±1n). (A9)

With Eq. (A9), we can further derive

∂

∂n

[
−σ (n)

∂T

∂n

]
= (G + K0)[σ0(G + K0)φ0 + σ+1(G + K−1)φ−1 + σ−1(G + K+1)φ+1]eiK0nei(Gn−W τ )

+ (G + K+1)[σ0(G + K+1)φ+1 + σ+1(G + K0)φ0]eiK+1nei(Gn−W τ )

+ (G + K−1)[σ0(G + K−1)φ−1 + σ−1(G + K0)φ0]eiK−1nei(Gn−W τ )

+ o(eiK±1n). (A10)

By arranging the terms associated with eiK0n, eiK+1n, and eiK−1n in Eqs. (A7), (A8), and (A10) together, we can obtain three
equations,

− i[ρ0(W + uG + uK0)φ0 + ρ+1(W + uG + uK−1)φ−1 + ρ−1(W + uG + uK+1)φ+1]

+ (G + K0)[σ0(G + K0)φ0 + σ+1(G + K−1)φ−1 + σ−1(G + K+1)φ+1] = 0, (A11a)

− i[ρ0(W + uG + uK+1)φ+1 + ρ+1(W + uG + uK0)φ0]

+ (G + K+1)[σ0(G + K+1)φ+1 + σ+1(G + K0)φ0] = 0, (A11b)

− i[ρ0(W + uG + uK−1)φ−1 + ρ−1(W + uG + uK0)φ0]

+ (G + K−1)[σ0(G + K−1)φ−1 + σ−1(G + K0)φ0] = 0. (A11c)

Equation (A11) is written in the n-τ frame, and we can also express it in the x-t frame by taking k = G and ω = W + uG,
where k and ω are, respectively, the wave vector and circular frequency in the x-t frame,

− i[ρ0(ω + uK0)φ0 + ρ+1(ω + uK−1)φ−1 + ρ−1(ω + uK+1)φ+1]

+ (k + K0)[σ0(k + K0)φ0 + σ+1(k + K−1)φ−1 + σ−1(k + K+1)φ+1] = 0, (A12a)

− i[ρ0(ω + uK+1)φ+1 + ρ+1(ω + uK0)φ0]

+ (k + K+1)[σ0(k + K+1)φ+1 + σ+1(k + K0)φ0] = 0, (A12b)

− i[ρ0(ω + uK−1)φ−1 + ρ−1(ω + uK0)φ0]

+ (k + K−1)[σ0(k + K−1)φ−1 + σ−1(k + K0)φ0] = 0. (A12c)

With Eqs. (A12b) and (A12c), we can derive the expressions of φ+1 and φ−1,

φ+1 = − (k + K+1)σ+1(k + K0) − iρ+1(ω + uK0)

(k + K+1)σ0(k + K+1) − iρ0(ω + uK+1)
φ0, (A13a)

φ−1 = − (k + K−1)σ−1(k + K0) − iρ−1(ω + uK0)

(k + K−1)σ0(k + K−1) − iρ0(ω + uK−1)
φ0. (A13b)
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We then consider two approximations of k � K and ω �
uK , so Eq. (A13) can be reduced to

φ+1 = − K+1σ+1k − iρ+1ω

K+1σ0K+1 − iρ0uK+1
φ0, (A14a)

φ−1 = − K−1σ−1k − iρ−1ω

K−1σ0K−1 − iρ0uK−1
φ0. (A14b)

Similarly, Eq. (A12a) can also be reduced to

k2σ0φ0 − iωρ0φ0 + (kσ−1K+1 − iρ−1uK+1)φ+1

+ (kσ+1K−1 − iρ+1uK−1)φ−1 = 0. (A15)

The substitution of Eq. (A14) into Eq. (A15) yields

k2σ0φ0 − iωρ0φ0

− (kσ−1K+1 − iρ−1uK+1)(K+1σ+1k − iρ+1ω)

K+1σ0K+1 − iρ0uK+1
φ0

− (kσ+1K−1 − iρ+1uK−1)(K−1σ−1k − iρ−1ω)

K−1σ0K−1 − iρ0uK−1
φ0 = 0.

(A16)

Equation (A16) can be further arranged in a physical form,

−iω

(
ρ0 + iKuρ+1ρ−1

σ0K2 − iρ0uK
+ −iKuρ+1ρ−1

σ0K2 + iρ0uK

)
φ0

+ ik

(
K2uσ+1ρ−1

σ0K2 − iρ0uK
+ K2uσ−1ρ+1

σ0K2 + iρ0uK

)
φ0

+ k2

(
σ0 − K2σ+1σ−1

σ0K2 − iρ0uK
− K2σ+1σ−1

σ0K2 + iρ0uK

)
φ0

−ωk

( −iKρ+1σ−1

σ0K2 − iρ0uK
+ iKρ−1σ+1

σ0K2 + iρ0uK

)
φ0 = 0. (A17)

By taking ∂/∂t = −iω, ∂/∂x = ik, and T̃ = φ0ei(kx−ωt ),
we can rewrite Eq. (A17) as

ρ̃
∂T̃

∂t
+ C

∂T̃

∂x
− σ̃

∂2T̃

∂x2
− S

∂2T̃

∂x∂t
= 0, (A18)

where the homogenized parameters take the form of

σ̃ = σ0 − K2σ+1σ−1

σ0K2 − iρ0uK
− K2σ+1σ−1

σ0K2 + iρ0uK
, (A19a)

ρ̃ = ρ0 + iKuρ+1ρ−1

σ0K2 − iρ0uK
+ −iKuρ+1ρ−1

σ0K2 + iρ0uK
, (A19b)

C = K2uσ+1ρ−1

σ0K2 − iρ0uK
+ K2uσ−1ρ+1

σ0K2 + iρ0uK
, (A19c)

S = −iKσ−1ρ+1

σ0K2 − iρ0uK
+ iKσ+1ρ−1

σ0K2 + iρ0uK
. (A19d)

We can further reduce Eq. (A19) to

σ̃ = σA

(
1 − 2π2σ 2

B

4π2σ 2
A + ρ2

Au2γ 2

)
, (A20a)

ρ̃ = ρA

(
1 − 1

2

ρ2
Bu2γ 2

4π2σ 2
A + ρ2

Au2γ 2

)
, (A20b)

C = u
2π2σAσBρB

4π2σ 2
A + ρ2

Au2γ 2

(
cos α + ρAuγ

2πσA
sin α

)
, (A20c)

S = u
1

2

γ 2σBρAρB

4π2σ 2
A + ρ2

Au2γ 2

(
cos α + 2πσA

ρAuγ
sin α

)
, (A20d)

or

σ̃ = σA

(
1 − σ 2

B

2σ 2
A

1

1 + 
2

)
, (A21a)

ρ̃ = ρA

(
1 − ρ2

B

2ρ2
A


2

1 + 
2

)
, (A21b)

C = u
σBρB

2σA

1

1 + 
2
(cos α + 
 sin α), (A21c)

S = 1

u

σBρB

2ρA


2

1 + 
2

(
cos α + 1



sin α

)
, (A21d)

with 
 = ρAuγ /(2πσA).
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