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Particle diffusion is a fundamental process in various systems, so its effective manipulation is crucially impor-
tant. For this purpose, here we design a basic structure composed of two moving rings with equal-but-opposite
velocities and a stationary intermediate layer, which can realize multiple functions to control particle diffusion.
On the one hand, the intermediate layer allows particle exchange between the two moving rings, which gives
birth to an exceptional point of velocity. As a result, a geometric phase appears for a loop evolution of velocity
containing the exceptional point. On the other hand, the two moving rings also enhance the effective diffusivity
of the intermediate layer, which helps design a bilayer particle-diffusion cloak. The present cloak only requires
homogeneous parameters and simple structures, and meanwhile, its on and off can be flexibly controlled by
velocity. These results broaden the scope of geometric phase and provide hints for designing particle-diffusion
metamaterials.
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I. INTRODUCTION

Particle diffusion is a widespread transport method in
porous media, electronic devices, and biochemical reactions,
which has attracted lots of research interests. Many unex-
pected phenomena were revealed such as geometric phase
[1,2] and diffusion diffraction [3,4]. Recently, the dominant
equation of particle diffusion, i.e., the Fick law, has been
proved to be form-invariant under coordinate transformations
[5], yielding the development of particle-diffusion metama-
terials [5–10]. In contrast to other diffusion systems like
thermotics [11–15], more fundamental phenomena and mech-
anisms remain to be explored in particle-diffusion systems.

In this work, we design a basic structure which is com-
posed of two moving rings with equal-but-opposite velocities
connected by a stationary intermediate layer with permeabil-
ity for particles (see the top inset of Fig. 1). This structure
can be understood by a double-porosity model [16,17] to
some extent. Actually, moving materials or time-dependent
materials have attracted intensive research interests recently
[18–22]. Li et al. [21] first revealed an exceptional point in
a heat-diffusion system, which provides a direct guidance for
the exceptional point in our particle-diffusion system. Going
beyond the exceptional point, we further reveal a geometric
phase and bilayer cloak in this work. Therefore, although the
present structure is similar to that adopted for heat-diffusion
systems in Ref. [21], we reveal more physics including the
geometric phase and bilayer cloak, and may provide po-
tential applications for chemical reactions, fuel cells, drug
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delivery, catalysis, etc. Let us understand this structure from
two aspects.

On the one hand, the intermediate layer makes the two
moving rings coupled together, which can be effectively de-
scribed by a non-Hermitian Hamiltonian. As a result, an
exceptional point of velocity exists. If the velocity exceeds the
exceptional point, a stationary concentration profile will turn
into a moving one due to the broken of anti-parity-time sym-
metry [21–27] (see the left inset of Fig. 1). To go further, we
also explore a cyclic path of time-varying velocity containing
the exceptional point, which can give birth to an extra phase
difference of π (say, geometric phase). A schematic diagram
can be seen in the bottom inset of Fig. 1.

On the other hand, the two moving rings also affect the
intermediate layer. That is, the effective diffusivity of the
intermediate layer is largely enhanced, which is beneficial
to design a bilayer particle-diffusion cloak. Compared with
existing mechanisms based on the transformation theory or
multilayered structures [5–10], our scheme only requires
homogeneous parameters and simple structures, which is con-
venient for practical applications.

II. GEOMETRIC PHASE

The particle-diffusion process in the top inset of Fig. 1 can
be effectively described by a non-Hermitian Hamiltonian H ,

H =
[−i(k2D + h) + ku ih

ih −i(k2D + h) − ku

]
, (1)

where k is wave number, D is the diffusivity of the two
moving rings, u is velocity, and i = √−1 is the imaginary
unit. The coefficient h = Dm/(w d ) reflects the exchange rate
of particles between the two moving rings, where Dm and
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FIG. 1. Schematic diagram of geometric phase. The model is
shown on top, which involves two moving rings separated by a
permeable layer. Dependent on the velocity u, concentration profiles
can be unmoving or moving. After a cyclic path in the velocity space,
the particle concentration (shown with reference to the color bar in
the upper-right corner) may return to the initial state with or without
a π -phase shift.

w are, respectively, the diffusivity and thickness of the two
moving rings, and d is the thickness of the intermediate layer.
Detailed derivations of Eq. (1) can be found in the Appendix.
The eigenvalues of the H are

ω = −i[(k2D + h) ±
√

h2 − k2u2], (2)

where ω is complex frequency. uEP = h/k is an exceptional
point of velocity. The eigenstates for u < uEP are

ψ+ = [1, ei(π−θ )]T, ψ− = [1, eiθ ]T, (3)

where θ = sin−1(ku/h), and T denotes transpose. The eigen-
states for u > uEP are

ψ+ = [e−φ, eiπ/2−2φ]T, ψ− = [e−φ, eiπ/2]T, (4)

where φ = cosh−1(ku/h). Eigenvalues and eigenstates are
plotted in Fig. 7 of the Appendix.

Then, we can check that the non-Hermitian Hamiltonian
H satisfies H†ψ± = ω±ψ±, where H† is the Hermitian trans-
pose of H . ψ± and ω± are the complex conjugate of ψ± and
ω±, respectively. The eigenstates also satisfy 〈ψ±, ψ∓〉 = 0,
where 〈ψ±, ψ∓〉 denotes the complex inner product of ψ±
and ψ∓. Considering a time-varying velocity u, we can write
down the complex geometric phase under adiabatic approxi-
mation as [28]

γ± = i
∫ 〈ψ±(u), dψ±(u)〉

〈ψ±(u), ψ±(u)〉 , (5)

which agrees with the result of non-Hermitian quantum sys-
tems. The exceptional point yields 〈ψ±(uEP), ψ±(uEP)〉 = 0
due to the coalescence of two eigenstates. Therefore, the ex-
ceptional point serves as a pole in the complex integral. We
can rewrite Eq. (5) in a closed loop around the exceptional
point as [29]

γ± = i

2

∮
d ln〈ψ±(u), ψ±(u)〉. (6)

The geometric phase takes on γ± = π or −π according to the
residue theorem, and the sign is determined by the direction

of closed loop. If the evolution route does not contain the
exceptional point, the integral in a closed loop is naturally
equal to zero.

To physically understand the origin of geometric
phase, we also discuss the dynamics from noneigen-
states to eigenstates with COMSOL MULTIPHYSICS
(http://www.comsol.com/). We define C1 and C2 as the
concentrations along the upper and lower interior edges
of the moving rings. The initial states are set at five
eigenstates with the forms in the Cartesian coordinates as
C1(x, y, t = 0) = A1y/

√
x2 + y2 + B1 and C2(x, y, t = 0) =

A2(y/
√

x2 + y2 cos θ − x/
√

x2 + y2 sin θ ) + B2 for
ω− [or C2(x, y, t = 0) = A2(−y/

√
x2 + y2 cos θ −

x/
√

x2 + y2 sin θ ) + B2 for ω+] with A1 = A2 = 200,
B1 = B2 = 300, and θ = sin−1 (ku/h). Then, we set velocities
at 100 (<uEP) and 300 (>uEP) μm/s to study evolutions. The
directions of velocity are clockwise for the upper ring and
anticlockwise for the lower ring. The theoretical phase
differences with u = 100 μm/s are π/6 for ω− and 5π/6
for ω+. We track the evolutions of C1 and C2 by following
their maximum points. The initial and final states are shown
in the left column of Fig. 2. The trajectories of Max(C1) and
Max(C2) with two different velocities are plotted in the right
two columns of Fig. 2.

Since the initial states are not the eigenstates of u =
100 μm/s, these noneigenstates start moving to eigenstates.
Finally, all five initial states move to the same final state with
θ ≈ π/6, which is the eigenstate of the eigenvalue ω−. This
occurs because of the nonorthogonality of the two eigenstates
at different branches (for example, the eigenstates E+

1 and E−
2

are not orthogonal) [21]. Meanwhile, the decay rate of the
upper branch is much lager than that of the lower one, so the
eigenstate at the lower branch becomes the final observable
one associated with the eigenvalue ω−.

In addition to the final states, we also care about evolution
routes. For example, the moving directions of maximum point
in Figs. 2(h), 2(k), and 2(n) are all against the velocities of
respective moving rings. This occurs because the evolution
route should try to avoid going through the eigenstate of the
eigenvalue ω+ (with a far larger decay rate) to survive longer.
A principle is to ensure concentration profiles to survive as
long as possible. When the velocity is larger than the ex-
ceptional point, the concentration profiles are always moving
because the real parts of eigenvalues ω appear (see the right
column in Fig. 2).

We also perform finite-element simulations to visualize ge-
ometric phase. We consider a cyclic path of velocity excluding
the exceptional point. The initial velocity is u = 100 μm/s,
and the initial state is set at the eigenstate associated with ω−
(say, a phase difference of π/6). Then, we evolve the velocity
according to the curve shown in Fig. 3(a). In this process, the
eigenvalue is always purely imaginary, indicating that no extra
phase difference is accumulated. As a result, this path brings
the final state back to the initial concentration profile exactly
[see Figs. 3(b) and 3(c)].

However, it is different when the path of velocity contains
the exceptional point [see Figs. 3(d)–3(f) and Figs. 3(g)–3(i)].
As the velocity increases and exceeds the exceptional point,
the real parts of eigenvalues appear, indicating that an extra
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FIG. 2. Evolution of eigenstates. The initial and final states with two different velocities are presented in the left column. The trajectories
of Max(C1) and Max(C2) along the interior edges of the two moving rings with u = 100 and u = 300 μm/s are shown in the middle and right
columns, respectively. Parameters: w = 0.5 cm, d = 0.1 cm, r = 10 cm, r′ = 11 cm, D = 10−6 m2/s, and Dm = 10−8 m2/s.

phase difference starts to accumulate. This process smoothly
brings the initial state from one branch to the other. When the
accumulated phase difference makes the state go through the
eigenstate of another eigenvalue ω+ (with a phase difference

of 5π/6), the profile can no longer go back to the initial
position, as discussed in Fig. 2. Then, the phase difference
continuously increases to reach a different position associated
with eigenvalue ω− and phase difference π/6. Fortunately, the
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FIG. 3. Simulations of geometric phase. The left column describes the paths of time-varying velocity. The middle column shows the initial
and final states. The right column illustrates the trajectories of Max(C1) and Max(C2) along the interior edges of the channels. The parameters
are the same as those for Fig. 3.

concentration profile is flipped after one loop, and a phase
difference of π is accumulated [see Figs. 3(e) and 3(f), and
Figs. 3(h) and 3(i)]. This is just the indicator of geometric
phase. Here, the eigenstate ψ+ has a geometric property to
some extent.

Finally, when the cyclic evolution goes cross the ex-
ceptional point twice [see Fig. 3(j), say, crossing the
eigenstate corresponding to the eigenvalue ω+ twice], it brings
back to the initial state without any global phase change
[see Figs. 3(k) and 3(l)].
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FIG. 4. Schematic diagram of bilayer particle-diffusion cloak.
(a) Object in the background. (b) Separating the object and
background with an isolated (zero-diffusivity) layer. (c) Applying
two moving rings with appropriate velocity. (d) and (e) Three-
dimensional views.

III. BILAYER CLOAK

We have discussed the effect of the intermediate layer on
the two moving rings, i.e., allowing particle exchange. In this
part, we discuss from another aspect, i.e., the effect of the two
moving rings. That is, the moving of the two rings enhances
the effective diffusivity of the intermediate layer, which is
helpful to design a bilayer particle-diffusion cloak. Cloaking
is one of the most attractive functions which can protect ob-
jects from being detected. Particle-diffusion cloaking has also
potential applications in chemical and biological systems.

The design idea is schematically shown in Fig. 4. When
there is an object in the background, the concentration pro-
file will be distorted [see Fig. 4(a)]. Then, we apply two
steps to remove concentration distortion. Firstly, we use a
layer with zero diffusivity to make the object isolated [see
Fig. 4(b), forming a cloaked region], so the object can no
longer affect the background. Secondly, we add another layer
composed of two moving rings to remove the negative effect
of isolated region [see Fig. 4(c)]. By adjusting the equal-but-
opposite velocity appropriately, particle-diffusion invisibility
can be achieved. The three-dimensional views are presented
in Figs. 4(d) and 4(e). Since we use two layers (one layer for
isolation and another one for compensation), the cloak is also
called a bilayer cloak.

The simulations with a linear field is shown in Fig. 5. The
left and right sides are fixed at high and low concentrations,
respectively. The other two sides are associated with no-flux
conditions. When there is a square object in the center, the
isolines are repelled [see Fig. 5(a)]. When we use the first
layer to isolate the object, the isolines are contracted [see

FIG. 5. Cloaking effect in a linear field. The square plate is
44×44×0.1 cm3 with diffusivity of 10−6 m2/s. The two moving
rings are with w = 0.5 cm and D = 10−8 m2/s. (a) Square object
with width of 12 cm and diffusivity of 10−4 m2/s in the center.
(b) Isolated hole with radius of 10 cm in the center. (c) Two rings with
inner radius of 10 cm and outer radius of 11 cm in the center, moving
with equal-but-opposite velocities of 37 μm/s. (d) Pure background.

Fig. 5(b)]. Then, we apply the second layer with two moving
rings. In view of the design of bilayer thermal cloaks [30–36],
if we enhance the diffusivity of the intermediate layer up to
D′

m = Dm(1 + r2/r′2)/(1 − r2/r′2) (where r and r′ are, re-
spectively, the inner and outer radii of the moving rings, and
D′

m is enhanced diffusivity), cloaking effect can be achieved.
For this purpose, we set the velocity of two moving rings at
37 μm/s, and the enhanced diffusivity can just satisfy the
requirement of a bilayer cloak. As a result, cloaking effect
is realized [see Fig. 5(c)], which has the same background
concentration profile as a pure background [see Fig. 5(d)].

Cloaking effect still holds when we apply a nonlinear field
(see Fig. 6). If there is an object or only one layer for iso-
lation in the center, concentration profiles are distorted [see
Figs. 6(a) and 6(a)]. When the bilayer scheme is applied,
cloaking effect is obtained again [see Figs. 6(c) and 6(d)].
Therefore, the present scheme is applicable for both linear
and nonlinear fields. Actually, one can place any object in
the cloaked region without distorting the concentration pro-
file in the background. Such a scheme can avoid anisotropic,
singular, and inhomogeneous parameters derived from trans-
formation theory [5–10]. Meanwhile, cloak-on and cloak-off
can be easily controlled by velocity.

IV. DISCUSSION AND CONCLUSION

Incidentally, all parameters adopted in the above simula-
tions are chosen to match practical conditions. For example,
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FIG. 6. Cloaking effect in a nonlinear field. The parameters are
the same as those for Fig. 5. Differently, a high concentration is set
at the left-bottom corner, and a low concentration is set at the upper
and right boundaries.

the diffusivity of the two moving rings is approximately set
at the magnitude of pure gas diffusion, and that of the inter-
mediate layer is around the magnitude of gas diffusion in a
porous medium. A larger porosity means a stronger exchange
rate because gas can penetrate between the two moving rings
with a higher efficiency. Additionally, the gas in the rings
can be driven to rotate by connecting rotary motors to the
rings.

In summary, in addition to existing systems, macro-
scopic particle-diffusion systems can also exhibit exceptional
points and geometric phases. We also design a bilayer
particle-diffusion cloak with the present structure. These
properties may lay a foundation for studying topologically
protected phenomena, i.e., by designing the particle-diffusion
counterparts of quantum Hall effects or topological insula-
tors/superconductors. Many relevant open questions can be
immediately prompted, say, those related to the ion-exchange
behavior between membranes or to the manipulation of parti-
cle diffusion.
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APPENDIX

We study a two-dimensional model as shown in Fig. 7(a).
The perimeter and width of the two moving rings are l and w,
respectively. The particles in the upper and lower rings move
with equal-but-opposite velocities (+u and −u). A stationary
permeable layer separates the two moving rings, whose thick-
ness (d) and diffusivity (Dm) determine the exchange rate of
particles between the two moving rings. We respectively de-
note the particle concentrations in the upper ring, lower ring,
and intermediate layer as C1, C2, and Cm, and the macroscopic
particle-diffusion process is dominated by

∂C1

∂t
= D

(
∂2C1

∂x2
+ ∂2C1

∂z2

)
− u

∂C1

∂x
, d/2 � z � w + d/2

∂Cm

∂t
= Dm

(
∂2Cm

∂x2
+ ∂2Cm

∂z2

)
, −d/2 < z < d/2

∂C2

∂t
= D

(
∂2C2

∂x2
+ ∂2C2

∂z2

)
+ u

∂C2

∂x
,

−w − d/2 � z � −d/2. (A1)

Equation (A1) indicates the mass conservation of the macro-
scopic particle-diffusion process. Such a process can be
understood by a double-porosity model [16,17] to some
extent.

Since we discuss a quasi-one-dimensional system (l � w

and l � d), it is reasonable to suppose that the concentration
variance along z axis (i.e., ∂2C/∂z2) is negligible. We set the
intermediate layer to be thin enough, and the middle equation
in Eq. (A1) can be treated as two particle sources (s1 for the
upper ring and s2 for the lower ring). Then, Eq. (A1) can be
reduced to

∂C1

∂t
= D

∂2C1

∂x2
− u

∂C1

∂x
+ s1, d/2 � z � w + d/2

∂C2

∂t
= D

∂2C2

∂x2
+ u

∂C2

∂x
+ s2, −w − d/2 � z � −d/2.

(A2)

Boundary conditions are given by the continuities of particle
concentrations and particle fluxes,

C1 = Cm, z = d/2

C2 = Cm, z = −d/2

j1 = −D
∂C1

∂z
= −Dm

∂Cm

∂z
, z = d/2

j2 = D
∂C2

∂z
= Dm

∂Cm

∂z
, z = −d/2, (A3)

where j1 and j2 are the particle fluxes from the intermediate
layer to the upper and lower rings, respectively. Since we have
neglected the higher-order terms (∂2C/∂z2 = 0), Cm is linear
along z axis, thus yielding ∂Cm/∂z = (C1 − C2)/d . Since the
width of the two moving rings w is thin enough, we can
assume that the particle sources are uniformly distributed, say,
s1 = j1/w = −Dm(C1 − C2)/wd = −s2. Then, Eq. (A2) can
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FIG. 7. Eigenvalues and eigenstates. (a) Simplified two-dimensional model with r = 10 cm, w = 0.5 cm, d = 0.1 cm, D = 10−6 m2/s,
and Dm = 10−8 m2/s. (b) Negative imaginary part and (c) real part of the eigenvalue ω as a function of velocity u. Solid lines and block squares
are analytical results and simulation results, respectively. (d)–(j) Eigenstates at different positions indicated by stars in (b) and (c).

be further reduced to

∂C1

∂t
= D

∂2C1

∂x2
− u

∂C1

∂x
+ h(C2 − C1),

d/2 � z � w + d/2

∂C2

∂t
= D

∂2C2

∂x2
+ u

∂C2

∂x
+ h(C1 − C2),

−w − d/2 � z � −d/2, (A4)

where h = Dm/(w d ) reflects particle exchange rate. When
Dm is small, the particle exchange between the two moving
rings has time delay, thus yielding a small exchange rate h.
Although Eq. (A4) typically describes a diffusion process
(characterized by a first-order partial derivative with respect
to time t), we use plane-wave solutions to handle the diffusion
process,

C1 = A1ei(kx−ωt ) + B1

C2 = A2ei(kx−ωt ) + B2, (A5)

where A1 (or A2) and B1 (or B2) are the amplitude and refer-
ence value of the particle concentration in the upper (or lower)
ring, respectively. This is reasonable because we apply a
periodic boundary condition. We neglect the reference values
(say, B1 = B2 = 0) for brevity, and care about the real parts
of Eq. (A5) only. The substitution of Eq. (A5) into Eq. (A4)
yields

ωA1 = −ik2DA1 + kuA1 + ih(A2 − A1),

d/2 � z � w + d/2

ωA2 = −ik2DA2 − kuA2 + ih(A1 − A2),

−w − d/2 � z � −d/2. (A6)

Equation (A6) can be rewritten as an eigenequation Hψ =
ωψ where H has the form of Eq. (1) in the main text.

We also plot the real and imaginary parts of eigenvalues
in the u-space, as illustrated in Figs. 7(b) and 7(c). In the
region u < uEP, H occupies two branches of purely imag-
inary eigenvalues, and the system is in an anti-parity-time
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symmetric region [21]. Especially, right at the exceptional
point u = uEP, the system marks the merging of two eigenval-
ues. When u > uEP, the real part of eigenvalue appears due to
the broken of anti-parity-time symmetry. Therefore, this point
uEP = h/k serves as an exceptional point of velocity.

For a vanishing exchange rate (h = 0), the eigenvalue al-
ways possess nonzero real parts at u 	= 0, so there is only a
moving state. That is, the two concentration profiles in the
upper and lower rings propagate independently. Differently,
when the two rings are coupled together (h 	= 0), the system
exhibits two different states as u varies. Therefore, the parti-
cle exchange between the two moving rings is a key factor,
which can be regarded as the interference of the macroscopic
particle-diffusion system. When u < h/k, eigenvalues are
purely imaginary. Therefore, the concentration profiles in the
two moving rings maintain a constant phase difference (π − θ

for ω+ and θ for ω−), and decay motionlessly. When u > h/k,
the real parts of eigenvalues appear. Thus, the concentration
profiles in the two moving rings maintain a constant phase
difference (π/2 for both ω+ and ω−), but decay with motion.

We also perform finite-element simulations to confirm the
approximation from Eqs. (A1) to (A2). Due to the peri-
odic boundary condition, the two moving rings with length
l = 2πr only allow discrete wave numbers k = nl/2π =
nr−1 with n being any positive integers. We focus on the
fundamental modes (n = 1) which have the lowest decay
rate. The simulation eigenvalues are obtained by setting the
initial states to be exactly the corresponding eigenstates,

say, C1(x, t = 0) = A1 cos(kx) + B1 and C2(x, t = 0) =
A2 cos(kx + θ ) + B2 corresponding to ω− [or C2(x, t = 0) =
A2 cos(kx + π − θ ) + B2 corresponding to ω+] with A1 =
A2 = 200, B1 = B2 = 300, and θ = sin−1(ku/h). We fit the
amplitude decaying from 250 to 60000 s with the function
of C = Ae−λt + B, where λ = −Im(ω) is decay rate. When
the velocity exceeds the exceptional point, we also track the
motion before 2000 s and calculate the frequency [Real(ω)].
The simulation results are plotted as discrete dots in Figs. 7(b)
and 7(c), which agree with the solid lines predicted by Eq. (2).
Since the eigenstates at the upper branch have larger decay
rates, they are metastable, resulting in smaller simulation
eigenvalues of −Im(ω) than theoretical ones.

We also plot the eigenstates indicated by the stars in
Figs. 7(b) and 7(c) [see Figs. 7(d)–7(j)]. When plotting the
eigenstates, we adjust the length l and width w to keep an
appropriate ratio for the clarity of presentation. When u = 0,
the phase differences are θ1 = 0 for eigenstate E−

1 and π −
θ1 = π for eigenstate E+

1 . As u increases to the exceptional
point, θ = sin−1 (ku/h) also increases to π/2. Thus, the two
profiles of C1 and C2 coincide with each other with a phase
difference of π/2. The eigenstates in Figs. 7(d)–7(h) decay
motionlessly. When u > uEP, the concentration profiles keep a
phase difference of π/2 and propagate together. The direction
follows the moving ring with a larger concentration amplitude,
i.e., backward in Fig. 7(i) and forward in Fig. 7(j). The finite-
element simulations agree with the eigenstates predicted by
Eqs. (3) and (4).
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