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Designing bistability or multistability in macroscopic diffusive systems
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We theoretically design a kind of diffusion bistability (and even multistability) in the macroscopic scale,
which has a similar phenomenon but different underlying mechanism from its microscopic counterpart [Phys.
Rev. Lett. 101, 267203 (2008)]; the latter has been extensively investigated in literature, e.g., for building
nanometer-scale memory components. By introducing second- and third-order nonlinear terms (that opposite
in sign) into diffusion coefficient matrices, a bistable energy or mass diffusion occurs with two different steady
states identified as “0” and “1.” In particular, we study heat conduction in a two-terminal three-body system
and show that this bistable system exhibits a macroscale thermal memory effect with tailored nonlinear thermal
conductivities. The theoretical analysis is confirmed by finite-element simulations. Also, we suggest experiments
with metamaterials based on shape memory alloys. This theoretical framework blazes a trail on constructing
intrinsic bistability or multistability in diffusive systems for macroscopic energy or mass management.
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I. INTRODUCTION

Modern electronic techniques are facing increasingly
prominent heat dissipation problems due to shrinking chip
sizes and increasing integration levels [1]. Fortunately, the
past decade has witnessed the possibility of manipulating
heat transport at nanoscale [2–7], which provides a promising
method in evolving electron-based computation. Phononics, a
microscale interpretation of manipulating heat flow to carry
and process information, has been flourishing since then [8].
To date, indispensable elements of phononic computers, in-
cluding thermal diodes [2], thermal logical gates [3], and
thermal memories [4], have been proposed theoretically and
experimentally. As a basic phononic information storage, the
thermal memory requests a nonlinear bistable thermal circuit,
where two different steady states can be demonstrated as
“0” and “1” beyond a same boundary condition, just like
its electronic counterpart. Although this concept was pro-
posed in 2008 [4], the studies of thermal bistability (TBIS)
devices are still far from being satisfactory (say, compared
with existing research of optical bistability), which prohibits
its practical applications. A reason behind this situation is
that most research is executed at microscopic scale but the
nanofabrication capacity is limited.

Recent progress in TBIS focus on achieving bistable
phenomenon by introducing nonlinear thermal radiation
for forming the negative differential thermal resistance
(NDTR) [9–15], in which the Stefan-Boltzmann law is de-
viated. As the success in optical bistability [16–20], it is
natural to migrate its methods into thermal radiation for
TBIS because both optical and thermal-radiation processes
can be classified as wave physics. Comprehensively, TBIS is
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realized mainly by two ways: the radiative phase transition
at a specific temperature region [9–12] and the anomalous
radiative phenomenon such as near-field radiation or nonlinear
optical resonances [13–15]. The switching time between two
states has been improved to several hundreds of microsec-
onds in the laboratory. It seems that the nonlinear thermal
radiation can be a potential theoretical scheme for achieving
TBIS.

However, in a macroscopic diffusive system such as heat
conduction, TBIS has never been touched because of the
absence of a theoretical framework analogous to its coun-
terpart in wave systems. Nevertheless, heat conduction, a
sort of major heat-transfer mode which is described by the
diffusion equation [21], cannot apply to the method in wave
processes. This is because of the distinction of governing
equations between diffusive and wave systems [22]. Hence, it
is necessary to consider conduction TBIS due to its ubiquity.
On the one hand, thermal conduction still plays a primary role
of heat dissipation in traditional electron-based computation.
Thermal and electronic memory may be well coupled by con-
duction TBIS devices. On the other hand, great progress has
been made in manipulating macroscopic thermal conduction
at will, especially in recent decades, by using the theory of
transformation thermotics and thermal metamaterials [23–32],
which may facilitate the design and manufacture of conduc-
tion TBIS devices. In this work, we establish a bistability
theory for treating diffusive systems. We take heat conduction
as a classical diffusive system and deduce the nonlinear-heat-
conduction parameters by adopting two different theoretical
methods. Finite-element simulations confirm it and further
demonstrate a practical thermal memory process. We also
give a proof-of-principle experimental design by adopting the
temperature-trapping theory [32]. The theoretical framework
applies to tailoring diffusion coefficient matrices for bistabil-
ity (and multistability) in diffusive processes.

2470-0045/2020/101(2)/022119(8) 022119-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3617-3275
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.022119&domain=pdf&date_stamp=2020-02-18
https://doi.org/10.1103/PhysRevLett.101.267203
https://doi.org/10.1103/PhysRevLett.101.267203
https://doi.org/10.1103/PhysRevLett.101.267203
https://doi.org/10.1103/PhysRevLett.101.267203
https://doi.org/10.1103/PhysRevE.101.022119


WANG, DAI, YANG, AND HUANG PHYSICAL REVIEW E 101, 022119 (2020)

II. METHOD

A diffusive system is usually described by a force causing a
flux. For example, Fourier’s law J = −κ∇T implies the heat
flux is induced by a temperature gradient, similar in form to
Ohm’s law I = −ε∇U and Fick’s law q = −D∇n. Generally,
the relation between fluxes and forces of a diffusive system
can be written as

Yi =
n∑

j=1

Ki jXj, (1)

where i represents the variety of fluxes, and j is the symbol
of different kinds of forces. Considering a simple single-field
diffusion, i = j, Eq. (1) comes into no-coupled transport in the
system. If the elements of transport coefficient tensor Kii are
constant, the relation between a flux Yi and a force Xi is linear.
However, bistability requests that the system deviates from a
linear relation between Yi and Xi. That is to say, nonlinearity
of elements in the coefficient matrices becomes necessary for
getting two or more steady-state solutions in the diffusion
equation. Let us take Fourier’s law as an example. Here,
nonlinearity in macroscopic heat conduction can be due to the
temperature dependence of thermal conductivity, κ (T ) [33].
Thus, by engineering κ (T ) of a thermal circuit, a NDTR [4,5]
will work, which induces anomalous thermal diffusion. This
is essentially important for obtaining macroscopic TBIS.

Inspired by the model proposed in Ref. [4], let us consider
a two-terminal three-body heat transport model presented in
Fig. 1(a) without loss of generality. In this case, heat flows
along the x axis. A and B are two heat-conduction materials
with same sizes denoted as L (length) and S (cross-sectional
area). The middle small region C shows a uniform temperature
distribution due to a relatively high thermal conductivity. So
C is set for extracting state information of the system. We
aim at observing two divergent steady temperatures within C
under the same boundary condition so that TBIS is achieved.
Both extremes are connected to heat baths. We fix Th and Tc

as the temperature of two heat baths, respectively, and set T0

as the temperature of region C. According to the continuity
of heat flow, T0 has a unique solution under the steady state
if A and B are linear heat-conduction materials (namely, their
thermal conductivities κA and κB are temperature-independent
constants). The heat flows JA and JB running through A and
B are linear monotonic functions of T0, which can be verified
by JA = κA(Th−T0 )

L and JB = κB (T0−Tc )
L . Their changes with re-

spect to T0 are two straight lines with one intersection point
[JA(T0) = JB(T0)], which refers to the unique heat-conduction
steady state. However, if A and B are two nonlinear-heat-
conduction materials (that is, their thermal conductivities
depend on temperature), the number of steady states can be
increased. Here we denote κA(T ) and κB(T ) as their thermal
conductivities, respectively, which can be written as

κA(T ) = κA0 +
∑

m

χAmT m, (2)

κB(T ) = κB0 +
∑

n

χBnT n, (3)

where m and n are positive integers. The linear relation
between heat flow JA (or JB) and T0 is deviated. As illustrated

FIG. 1. (a) A two-terminal model for thermal bistability. Heat
transfers along the x axis. A and B are two different heat-conduction
materials. C is a region for reading out and writing in. Th and Tc

are temperatures of heat baths. T0 is the temperature of region C.
(b) Schematic diagram of heat flow in regions A (dotted red line) and
B (dashed blue line), and the net flow of region C (solid black line).
A and B have different nonlinear thermal conductivities, resulting in
three intersections.

in Fig. 1(b), there exists more than one intersection point of
JA and JB. That is to say, thermal bistability or multistability
phenomenon can appear due to the existence of nonlinear heat
conduction.

A. Calculations of net heat flow

We define J0 = JB − JA as the net heat flow from region C.
J0 = 0 is the necessary condition which a steady-state system
should satisfy. In a TBIS system, J0(T0) = 0 has three real
solutions. These three points are candidates of steady points.
But the point of ∂J0/∂T0 < 0 should be excluded because it is
an unstable equilibrium point. Then, which steady state will
the system come into? This depends on the initial conditions.
As shown in Fig. 1(b), a cubic function (rather than a quadratic
function) can construct a bistable system perfectly. Thus,
we can speculate that the index terms in Eqs. (2) and (3)
should be kept up to the second terms. This means m = n = 2.
Accordingly, Eqs. (2) and (3) can be reduced as

κA(T ) = κA0 + χA1T + χA2T 2, (4)

κB(T ) = κB0 + χB1T + χB2T 2. (5)
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Distinctly, there should be two factors constraining each other
in such a TBIS system. When one factor dominates, the
system will come into state I (on), vice versa into state II (off).
For TBIS, the dominating factors depend on the temperature-
evolution direction. For example, if relaxing from a low-
temperature state, factor I dominates and the system will
enter state I. On the contrary, an initial high-temperature state
will conclude in another final state. So χA1 and χA2 (or χB1

and χB2) are inferred to have opposite signs. Based on the
above analysis, we are in a position to calculate the thermal
conductivity parameters for a TBIS system.

Under a steady state, the nonlinear-thermal-conductivity
values show position dependence (one-to-one mapping to
position x). But the heat flows JA and JB are independent
of x due to heat-flow conservation. JA can be written as

JA = κeAS〈∇TA〉, where κeA is the effective thermal conduc-
tivity and 〈∇TA〉 is the corresponding average temperature
gradient of A. So is JB. Then we can derive JA and JB as

JA = κeAS〈∇TA〉 = κeA(Th − T0)S

L
, (6)

JB = κeBS〈∇TB〉 = κeB(T0 − Tc)S

L
. (7)

To conclude JA and JB, the effective thermal conductivities
should be deduced. For simplicity, we assume B is a linear
heat-conduction material (χBn = 0) and hold only A’s nonlin-
earity. This simplification will not affect the cubic relation
between net heat flow J0 and T0. Then κeA and κeB can be
written as

κeA =
∫ Th

T0
κA(T )

Th − T0
= κA0Th + 1

2χA1T 2
h + 1

3χA2T 3
h − (

κA0T0h + 1
2χA1T 2

0 + 1
3χA2T 3

0

)
Th − T0

, (8)

κeB = κB0. (9)

Substituting Eqs. (8) and (9) into Eqs. (6) and (7), we get

JA = −S

L

[
1

3
χA2T 3

0 + 1

2
χA1T 2

0 + κA0T0

−
(

1

3
χA2T 3

h + 1

2
χA1T 2

h + κA0Th

)]
, (10)

JB = S

L
(κB0T0 − κB0Tc). (11)

Defining the shape factor � = S
L , then J0 can be expressed as

J0 = JB − JA = �
[

1
3χA2T 3

0 + 1
2χA1T 2

0 + (κA0 + κB0)T0

− (
1
3χA2T 3

h + 1
2χA1T 2

h + κA0Th + κB0Tc
)]

.

(12)

Equations (4) and (5) describe the nonlinear heat conduc-
tion in the system. Generally, it is hard to solve the nonlinear-
heat-conduction differential equation. So we may adopt an
effective-thermal-conductivity approximation to avoid nonlin-
ear terms in the above. In addition, the Kirchhoff transfor-
mation provides another way to make the nonlinear equation
linearization [34]. As it works well in one-dimensional heat-
conduction problems, we can get exact solutions of temper-
ature distributions in our model. Then, comparing the two
results, we can verify the above approximation results.

Let us still consider the nonlinear heat conduction in region
A and assume region B has a linear thermal conductivity.
Under a steady state, heat conduction in region A can be
described as

∂

∂x

[
κA(T )

∂T

∂x

]
= 0. (13)

Here, we define a new variable U which has the same unit as
a temperature,

U = U (T ) =
∫ T

Tref

κA(T ′)
κA(Tref )

dT ′, (14)

where Tref is an arbitrary reference temperature. And Eq. (13)
can be transformed as

∂

∂x

[
κA(T )

∂T

∂U

∂U

∂x

]
= 0. (15)

Combing Eqs. (14) and (15), we can get a heat-conduction
equation with U ,

∂2U

∂x2
= 0. (16)

If we take Tref = 0 K, the variable U and corresponding upper
and lower bounds can be deduced as

U (T ) =
∫ T

0 (κA0 + χA1T ′ + χA2T ′2)dT ′

κA0

= κA0T + 1
2χA1T 2 + 1

3χA2T 3

κA0
, (17)

and

U1 = κA0Th + 1
2χA1T 2

h + 1
3χA2T 3

h

κA0
(x = a),

U2 = κA0T0 + 1
2χA1T 2

0 + 1
3χA2T 3

0

κA0
(x = b). (18)

Combing Eqs. (16) and (18) together, we can solve the expres-
sion of U as

U (x) = U2 − U1

L
x + U1, (19)

which indicates the value of U at each position. It is easy
to migrate U (x) back to T (x). Thus, by means of the
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FIG. 2. Analysis of the bistability and NDTR based on the ana-
lytical model discussed in the text. (a) Heat flow in region A (dotted
red line), B (dashed blue line), and net flow in region C (solid black
line) vs T0 of the system. Here B is a linear heat-conduction material
and JB curve is a straight line. JA and JB have three intersections.
(b) Thermal conductivities of A (dotted red line) and B (dashed blue
line) vs T0. The effective thermal conductivity of A is also shown
with solid red line by integral average of T0. The NDTR region is
shadowed in yellow, which contains two stable temperature points.

intermediate variable U , we can find the relation between T
and x as

U = κA0T + 1
2χA1T 2 + 1

3χA2T 3

κA0
= U2 − U1

L
x + U1. (20)

Taking the derivative of Eq. (20) with respect to x in region
A, we get ∂T

∂x |A,

∂T

∂x

∣∣∣∣
A

= κA0(U2 − U1)

κA(T )L
. (21)

Then, the net outflow of heat from C can be written as

J∗
0 = J∗

B − J∗
A = κB0

T0 − Tc

L
S + κA(T )

∂T

∂x

∣∣∣∣
A

S

= �

[
1

3
χA2T 3

0 + 1

2
χA1T 2

0 + (κA0 + κB0)T0

−
(

1

3
χA2T 3

h + 1

2
χA1T 2

h + κA0Th + κB0Tc

)]
, (22)

which echoes with Eq. (12). It is definite that a nonlinear
one-dimensional heat-conduction process can be simplified
by executing the space averaging of κ (T ), which makes a
detour around the nonlinear terms. This will facilitate the
disposal of the nonlinear-heat-conduction case.

B. Tailoring nonlinear-thermal-conductivities coefficients

We can see J0 satisfies a cubic relation with T0. Now we
construct another cubic function J ′

0(T0) with three zero points
T01, T02, T03 (suppose Tc < T01 < T03 < T02 < Th). J ′

0 can be
written as

J ′
0 = α[(T0 − T01)(T0 − T02)(T0 − T03)]

= α[T 3
0 − (T01 + T02 + T03)T 2

0

+ (T01T02 + T01T03 + T02T03)T0 − T01T02T03]. (23)

α is the precoefficient with a unit J/K. T01 and T02 are the
two designed stable temperatures of region C. By comparing
the coefficient and constant terms of Eqs. (12) and (23), we
acquire a set of equations

1
3�χA2 = α,

1
2�χA1 = −α(T01 + T02 + T03),

�(κA0 + κB0) = α(T01T02 + T01T03 + T02T03),

−�
(

1
3χA2T 3

h + 1
2χA1T 2

h + κA0Th + κB0Tc
)=−αT01T02T03.

(24)

Then we achieve

κA0 = α

�

[−T 3
h + (T01 + T02 + T03)T 2

h − (T01T02 + T01T03 + T02T03)Tc + T01T02T03

Th − Tc

]
,

κB0 = α

�

[
T 3

h − (T01 + T02 + T03)T 2
h + (T01T02 + T01T03 + T02T03)Th − T01T02T03

Th − Tc

]
,

χA1 = −2α

�
(T01 + T02 + T03),

χA2 = 3α

�
. (25)
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We can see χA1 and χA2 have opposite signs definitely,
which echo with the inference above. In fact, this is a feature
of a bistable system with two kinds of factors competing in the
process of evolution from a nonequilibrium state to an equi-
librium state. T01 and T02 are representations of two different
states, while T03 cannot exist in a steady state. Equation (25)
provides guidance in designing nonlinear parameters of heat-
conduction objects to realize TBIS. We can calculate the
coefficients according to the preset zero-point temperatures
(T01, T02, and T03), the temperatures of heat baths, and two
factors � and α.

According to this method, a diffusive system can in-
deed exhibit bistable states by engineering nonlinear trans-
port coefficients. This intrinsic bistability depends on two
competitive factors, which are reflected by two non-
linear terms with opposite signs. We prove that the
second- and third-order nonlinearity of transport coefficients
makes bistability effects valid. If the nonlinearity orders
are higher, multistability can come to appear. And the
switching time depends on the diffusion velocity of heat
or mass.

III. NUMERICAL ANALYSIS AND SIMULATION

We draw the graphs to illustrate our methods for tailoring
nonlinear thermal conductivities. On basis of the model
shown in Fig. 1(a), we set T01 = 330 K, T02 = 370 K,
and T03 = 350 K. The heat and cold baths are fixed at
400 and 300 K, respectively. Two factors are set as α =
0.001 J/K and � = 1 m. The substitution of these
parameters into Eq. (25) yields κA0 = 366.05 J/(mK), κB0 =
1.05 J/(mK), χA1 = −2.1 J/(mK2), and χA2 =
0.003 J/(mK3). The curves of JA, JB, and J0 vs T0 are shown
in Fig. 2(a). Three intersections emerge, corresponding to the
preset parameters T01, T02, and T03. In Fig. 2(b), the thermal
conductivities of A and B vs temperature are depicted. We can
see κA(T ) has negative values in a certain temperature region.
This is calculated as (328.02 K, 371.98 K), which refers to
the NDTR region (see yellow-shadowed region in Fig. 2).
The region completely contains two stable temperatures,
confirming that the desired TBIS is induced by the NDTR.
These two graphs accord with our expected results, as
sketched in Fig. 1(b).

When the coefficients of nonlinear thermal conductivities
have slight variations, will TBIS be broken? Here, we give a
1% value shift to four parameters (κA0, κB0, χA1, and χA2 are
increased by 1%, respectively). According to the comparisons
in Fig. 3, the small shift of κB0 cannot affect the TBIS. This
can be interpreted that the steady heat flow in the system stays
almost unchanged. While the thermal conductivity of A varies
slightly, TBIS will not exist anymore. So we can conclude
that the TBIS of heat conduction is parameter sensitive. This
strict limitation makes it hard to observe the TBIS phe-
nomenon in practical heat-conduction materials. But we can
carefully tailor an intrinsic TBIS with predesigned zero-point
temperatures.

We perform finite-element simulations based on the
commercial software COMSOL MULTIPHYSICS [35]. We build
a model with 9 cm length and 1 cm width. Heat conducts
along the x axis. The thermostat region is placed in the

FIG. 3. Net flow J0 vs T0 for different small-shift coefficients.
(a) TBIS behavior for different linear coefficients κA0. (b) TBIS
behavior for different linear coefficients κB0. (c) TBIS behavior
for different second-order coefficients χA1. (d) TBIS behavior for
different third-order coefficients χA2.

central region with κC = 1000 J/(mK). For the thermal
conductivities of left and right parts, we give 400, 500, and
600 K as three predesigned zero points. � is 1

4 m according
to the model’s geometry. α is arbitrary, and here we take it as
0.0001 J/K. Thus, we can calculate that κA0 = 290 J/(mK),
κB0 = 6 J/(mK), χA1 = −1.2 J/(mK2), and χA2 =
0.0012 J/(mK3). The density and specific heat of all materials
are set as 10 kg/m3 and 10 J/(kg K). Boundary conditions
are fixed at 700 (left) and 300 K (right). Then, we give 300
and 700 K, respectively, as initial surface temperatures, see
Fig. 4(a). After the temperature evolution within 0.004 s,
the system comes into stable states. However, the final
temperatures of C are different according to different initial
temperatures, which represent two different stable states. The
initial temperature 300 K induces 398.46 K (stable state I)
in C, while 700 K leads to 600.12 K (stable state II). The
states of C depend on the initial surface temperatures. We
fetch the final-state-temperature data of the model along the
x axis and curve it in Fig. 4(b). States I and II have two
different platform temperatures in region C (4∼5 cm), as
expected. In addition, we plot the theoretical results of heat
flow and thermal conductivities versus T0 as inset diagrams
in Fig. 4(b). Both 400 and 600 K are the preset stable values
for designing the thermal conductivity parameters. And the
simulation results confirm the theoretical values very well.

Then we demonstrate an overall thermal memory process
with the designed conduction TBIS in Fig. 5(a), which is
based on the simulation results in the above. First, we initialize
the model by a temperature writer in 300 K as an initial
temperature. After 0.004 s, the system will come into steady
state, and we read out T0 in region C by a temperature
reader. It is 398.46 K now. And then we write in another
temperature as 700 K. After 0.004 s, a steady temperature
of 600.12 K can be read out. In this model, the switching
time is 0.004 s, which depends on the density and specific
heat of each part. So these two parameters should be taken
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FIG. 4. Finite-element simulations of TBIS. (a) Transient simu-
lation results beyond fixed heat bath temperatures. After 0.004 s, the
system comes into a stable state with two different T0 values due to
the different initial temperatures. (b) Temperature distribution along
the x axis. The left end of the model is set as the origin point (x = 0).
Theoretical heat flows and thermal conductivities of the model are
shown for comparison with the simulation results in vignettes.

into consideration and optimized when devices are in practi-
cal application. This memory process makes the conduction
TBIS practical in fabricating macroscopic thermal memory
components.

IV. EXPERIMENTAL DESIGN

The temperature-trapping theory [32] inspires us to design
a proof-of-principle experiment. This theory implies a ther-
mostat region in the center of a spatially symmetric structure
within shape memory alloys (SMAs). The thermostat’s tem-
perature depends entirely on the critical temperature of SMAs.
Here, we improve this structure and design a two-stage-SMAs
device to achieve TBIS, as shown in Fig. 5(b). Two pairs of
SMAs are arrayed at both sides, which are in white and gray,
respectively, forming two-stage thermal switches. Different
types of SMAs are applied in each pair. In particular, these two
stages have different critical temperatures T1 and T2, where
T1 < T2. In detail, the white stage on the left levels below T1

and bends above T1, while the right one shows the same T1

but inverse deformation. The similar rule works on the gray
stage. Heat and cold baths are fixed on both sides with Th > T2

and Tc < T1. When the whole device is initialized under a low
temperature in the left part and a high temperature in right, all

FIG. 5. (a) A demonstration of thermal memory process with the
model we design. Four stages are displayed as initialization, reading-
out, writing-in, and reading-out. (b) An experimental design based
on the temperature-trapping theory. Two stages with different types
of SMA are arrayed. The central temperatures depend on the SMA-
stages’ critical temperatures.

the SMAs get straight. When coming to the steady state, the
outer stage bends and the heat flow cannot run into the inner
layer. The thermostat’s temperature approaches T1. When the
initial condition reverses, all stages bend. They will not be
level at steady state as Th > T2 and Tc < T1. This process
induces another steady state that T2 is the final temperature
of the thermostat. As the SMAs are commercially available,
it is feasible to assemble such a two-stage structure. But
the thermal contact resistances may affect the experimental
results, which should be considered further.

V. DISCUSSION AND CONCLUSION

For the temperature-dependent thermal conductivity of
A depicted in Fig. 1(a), the third-order nonlinearity is just
a necessary condition. We can find that |κA0| ∼ |χA1T | ∼
|χA2T 2| is another parameter requirement. Fortunately, these
extraordinary thermal properties were proved to emerge in
some bulk nonmetallic solids [36]. For example, the thermal
conductivity of bulk ZrO2 is 4.00 − 8.72 × 10−3T + 1.28 ×
10−5T 2 − 5.82 × 10−9T 3[W/(m K)], which agrees qualita-
tively with the conduction TBIS requires at the 103-K level.
It can be applied as material A in our model, combining
with a common material B. By solving the inverse solutions
of Eq. (24), namely, working out α, T01, T02, and T03, one
can estimate the experimental bistable temperature for such
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a structure composed of a nonlinear bulk heat-conduction
material plus a common material. Thus, the observation of
conduction TBIS in natural materials is practically probable.
Besides, by means of the composite effect of nonlinear heat
transfer [37], the fabrication of a conduction TBIS device with
composite materials is possible. In this case, the nonlinear
thermal conductivities can be well tailored if adjusting the
fraction or configuration of the composite bulk’s compo-
nents [38]. For example, a core-shell structure [33] and a
particle-embedded-in-host structure [39] may be candidates.
So we also suggest the composite manufacture method as
material A in fabricating the device for application scenarios.

Heretofore, we have established a theoretical framework
for achieving bistability in heat diffusive systems. We prove
that the TBIS phenomenon exists not only in the wave
process (say, nonlinear thermal radiation) but also can be
realized in heat-conduction systems. Second- and third-order
nonlinearity of thermal conductivity can induce a bistable
thermal circuit. When the nonlinearity orders go higher,
multistability can be observed as well. We have also given
numerical calculation results and show that the TBIS in
heat conduction is parameter sensitive. Besides, a completed
thermal memory process is demonstrated with four stages as
an evident consequence. Except for thermal memories, ther-

mal switch is another possible application. As the designed
experiment implies, the switch is initial-temperature forced
and can barrier or allow heat flows due to distinguishable
thermal conductivities. As waste heat is dissipated mainly
by the diffusive process in traditional computers, conduction
TBIS devices can thus be coupled with electronic devices,
which facilitates thermal calculation based on existing electric
calculation.

In summary, we introduce an approach of designing macro-
scopic bistability by taking the heat-conduction process as a
typical case. Due to the form or similarity of the governing
equations, this method is applicative in arbitrary diffusive
systems, for example, in DC systems or particle-diffusion
systems. By tailoring spatial asymmetry and nonlinearity of
diffusive parameters carefully, the bistability or multistability
can be realized. This method not only helps generate a signifi-
cant physical phenomenon in macroscopic diffusive processes
but also serves as a potential tool in macroscopic energy or
mass management.
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