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Dipole-assisted thermotics: Experimental demonstration of dipole-driven thermal invisibility
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Thermal management has made considerable progress in the past decade for the emerging field of thermal
metamaterials. However, two severe problems still handicap the development of thermal metamaterials. That
is, thermal conductivities should be singular and uncommon as required by corresponding theories. To solve
these problems, here we establish the theory of dipole-assisted thermotics. By tailoring the thermal dipole
moment, thermal invisibility can be achieved without the requirements of singular and uncommon thermal
conductivities. Furthermore, finite-element simulations and laboratory experiments both validate the theoretical
analyses. The performance of the dipole-driven scheme is excellent in both two and three dimensions, and in both
steady and transient states. Dipole-assisted thermotics not only offers a distinct mechanism to achieve thermal
invisibility, but also has potential applications in thermal management such as infrared signature reduction,
thermal protection, and infrared camouflage.
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I. INTRODUCTION

With growing concerns about energy issues, many re-
searchers have focused their research interest on thermal
management. This trend was mainly driven by the emerging
field of thermal metamaterials in the past decade. The most
representative example is thermal invisibility [1–17], which
has almost run through the development of thermal metama-
terials. Thermal invisibility is characterized by the uniform
thermal field of the matrix. For this purpose, many schemes
have been proposed, but they have their own shortcomings.
The initial exploration is based on transformation thermotics
[1–5], which is a thermal counterpart of transformation op-
tics [18]. However, transformation thermotics leads to four
severe problems, thus limiting practical applications. The first
is anisotropy, which requires different radial and tangential
components of a tensorial thermal conductivity. The second
is inhomogeneity, which means a spatially distributed thermal
conductivity. The third is singularity, which takes zero and in-
finite thermal conductivities. The fourth is uncommon thermal
conductivities. Thermal conductivities of common materials
range only from 0.026 (air) to 430 W m−1 K−1 (silver), and
those out of this range are uncommon [15]. Although highly
conductive materials do exist such as carbon nanotubes and
graphene, they are rare and practically difficult to utilize, thus
remaining a problem.

Although these four problems restrict practical applica-
tions, they also promote the development of thermal meta-
materials by solving them. Fortunately, the problems of
anisotropy and inhomogeneity were solved soon [6–15].
However, the problems of singular and uncommon thermal
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conductivities still cannot be solved simultaneously. For ex-
ample, we discuss a matrix with a very high thermal con-
ductivity, such as copper (400 W m−1 K−1), because high
thermal conductivities correspond to the high efficiency of
heat transfer. When a bilayer cloak [6–11] is designed, thermal
conductivities of the inner and outer shells are, respectively,
0 and 2615 W m−1 K−1, which are singular and uncom-
mon [see Fig. 1(a)]. When the concept of neutral inclusion
[11–14] is used, the thermal conductivity of the shell should
be 727 W m−1 K−1, which is also uncommon [see Fig. 1(b)].
When a near-zero-index cloak [15] is designed, the thermal
conductivity of the inner shell should tend to infinity, which
is singular [see Fig. 1(c)]. These two problems (singular and
uncommon thermal conductivities) largely restrict the devel-
opment of thermal metamaterials because they require either
complex structures or rare materials. For example, for the re-
alization of infinite thermal conductivities, thermal convection
should be introduced based on complex structures [15].

To completely solve these two problems, here we propose
the theory of dipole-assisted thermotics, which can remove the
requirements of singular and uncommon thermal conductivi-
ties simultaneously. In fact, we do not even require the design
of a shell, and a thermal dipole is enough [see Fig. 1(d)]. This
lies in the particularity of the thermal field of a thermal dipole,
which can just offset the influence of a particle by designing
the thermal dipole moment (M). It should be mentioned that,
although the dipole-driven scheme removes the requirements
of singular and uncommon thermal conductivities, the essence
of this work is about macroscopic thermal processes rather
than thermal conductivities.

In what follows, we establish the theory of dipole-assisted
thermotics in two dimensions. Furthermore, the theory is
validated by finite-element simulations and laboratory ex-
periments. Finally, we present the three-dimensional results
including the theory and finite-element simulations.
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FIG. 1. Different approaches to thermal invisibility. (a) A bilayer cloak satisfying κm = κs2(1 − p)/(1 + p), where p = (rs1/rs2)2. (b) The
concept of neutral inclusion satisfying κm = κs[κp + κs + (κp − κs )p]/[κp + κs − (κp − κs )p], where p = (rp/rs )2. (c) A near-zero-index cloak
satisfying κm = κs2(1 + p)/(1 − p), where p = (rs1/rs2)2. (d) A thermal dipole proposed in this work. Clearly, none of these approaches can
simultaneously remove the requirements of singular and uncommon thermal conductivities except for the present dipole-driven scheme.

II. THEORY OF DIPOLE-ASSISTED THERMOTICS
IN TWO DIMENSIONS

Thermal invisibility aims to keep the matrix thermal field
undistorted, and hence we focus on the matrix thermal field in
what follows. In the presence of an external uniform thermal
field G0, when there is a particle (with thermal conductivity
κp and radius rp) embedded in the matrix (with thermal
conductivity κm), it will distort the matrix thermal field. The
matrix thermal field (generated by the external uniform ther-
mal field), denoted as Gme, can be expressed as

Gme = −∇Tme. (1)

Tme is the temperature distribution given by [19]

Tme = −G0r cos θ − κm − κp

κm + κp
r2

pG0r−1 cos θ + T0, (2)

where (r, θ ) denote the cylindrical coordinates whose origin
is in the center of the particle, G0 = |G0|, and T0 is the
temperature at θ = ±π/2.

When there is only a thermal dipole (with heater power
Q and distance l) in the center of the particle, it will gen-
erate a thermal field in the matrix. The matrix thermal field

(generated by the thermal dipole), denoted as Gmd , can be
expressed as

Gmd = −∇Tmd . (3)

Tmd is the temperature distribution given by

Tmd = M

π (κm + κp)
r−1 cos θ + T0, (4)

where M is the thermal dipole moment given by M =
Ql . Equation (4) is valid when r � l , which is inves-
tigated in the discussion section. Detailed derivations of
Eq. (4) are as follows. In passive regions, we can write
down the general solution [19] to the heat conduction
equation ∇ · (−κ∇T ) = 0,

T = A0 + B0 ln r +
∞∑

i=1

[Ai sin(iθ ) + Bi cos(iθ )]ri

+
∞∑
j=1

[Cj sin( jθ ) + Dj cos( jθ )]r− j . (5)
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FIG. 2. Finite-element simulations in the presence of (a, d) an external uniform thermal field, (b, e) a thermal dipole, and (c, f) an external
uniform thermal field and a thermal dipole together. The simulation box is 20 × 20 cm2, rp = 6 cm, and l = 2 cm. The thermal conductivities
of the particle and the matrix are 200 and 400 W m−1 K−1, respectively. The thermal dipole moment should be 452.4 W m as required by
Eq. (16), which leads to Q = 22620 W. The heater or cooler of the thermal dipole has a radius of 0.5 cm. White lines represent isotherms.
For the convenience of comparison, temperatures higher than 323 K are shown as 323 K, and temperatures lower than 283 K are shown as
283 K.
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Boundary conditions are given by the continuous tempera-
tures and normal heat fluxes,

Tpd (rp) = Tmd (rp), (6)

(−κp∂Tpd/∂r)rp = (−κm∂Tmd/∂r)rp, (7)

where Tpd and Tmd are the temperature distributions (gen-
erated by the thermal dipole) of the particle and matrix,
respectively.

We perform some limit analyses to determine the forms
of Tpd and Tmd . We suppose rp → ∞, and then the particle
temperature distribution (generated by the thermal dipole) can
be expressed as

Tpd (rp → ∞) = −Q

2πκp
ln r+ + Q

2πκp
ln r−

= Ql

2πκp
r−1 cos θ

= M

2πκp
r−1 cos θ, (8)

where r+ and r− are the distances to the heater and cooler of
the dipole, respectively. Equation (8) is valid when r � l (or
l → 0). Thus, the temperature distribution of a thermal dipole
in two dimensions is characterized by r−1 cos θ .

We further consider a finite rp. The matrix temperature
distribution should also have the property of r−1 cos θ , but
certainly with a different coefficient from Eq. (8). The par-
ticle temperature distribution has two components. One is
determined by Eq. (8), and the other is a uniform thermal
field generated by the “thermal polarization.” These can be
concluded as

Tpd = M

2πκp
r−1 cos θ + αr cos θ + T0, (9)

Tmd = βr−1 cos θ + T0. (10)

Solving Eqs. (6), (7), (9), and (10), the undetermined
coefficients can be derived:

α = −M(κm − κp)

2πr2
pκp(κm + κp)

, (11)

β = M

π (κm + κp)
. (12)

With Eq. (12), Eq. (10) turns to the form of Eq. (4).
Because of the superposition principle of vector fields,

the matrix thermal field (generated by the external uniform
thermal field and thermal dipole together), denoted as Gs, can
be expressed as

Gs = Gme + Gmd = −∇Ts. (13)

Ts is the temperature distribution given by

Ts = −G0r cos θ −
(

κm − κp

κm + κp
r2

pG0 − M

π (κm + κp)

)
r−1 cos θ

+ T0. (14)

As mentioned at the very beginning, thermal invisibility is
characterized by the undistorted thermal field of the matrix,
and thus the second term on the right-hand side of Eq. (14)
should be zero:

κm − κp

κm + κp
r2

pG0 − M

π (κm + κp)
= 0. (15)

Solving Eq. (15), we can derive the thermal dipole moment,

M = (κm − κp) f G0, (16)

FIG. 3. Laboratory experiments. (a) Schematic diagrams of the
experimental devices and the fabricated sample. (b, c) Measured
results without and with a thermal dipole, respectively. (d, e) Cor-
responding finite-element simulations based on the experimental
settings in (a). Copper: thermal conductivity 400 W m−1 K−1, density
8960 kg m−3, and heat capacity 385 J kg−1 K−1. Air: thermal
conductivity 0.026 W m−1 K−1, density 1.29 × 10−3 kg m−3, and
heat capacity 1005 J kg−1 K−1. The radius of the 256 air holes is
0.22 cm, and the distance between air holes is 2/3 cm.
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where f = πr2
p is the acreage of the particle. When the

thermal dipole moment is set as required by Eq. (16), thermal
invisibility can be achieved.

III. FINITE-ELEMENT SIMULATIONS
IN TWO DIMENSIONS

Further, we perform finite-element simulations with COM-
SOL MULTIPHYSICS [20] to validate the theoretical analyses.
In Figs. 2(a) and 2(d), the temperatures of the left and right
boundaries are set at 323 and 283 K, and the upper and
lower boundaries are insulated. If there is a particle with
different thermal conductivity from the matrix in the cen-
ter, the isotherms are contracted due to the smaller thermal
conductivity of the particle [see Fig. 2(d)]. The distorted
temperature profile makes the particle visible with infrared
detection. Then, we explore the thermal profile of a thermal
dipole [see Figs. 2(b) and 2(e)]. All boundaries are insulated,
and we set the temperature at θ = ±π/2 at 303 K as a
reference temperature. The temperature profile is presented
in Fig. 2(e). Finally, we combine the structures shown in
Figs. 2(a) and 2(b) together and obtain the expected structure
as presented in Fig. 2(c). As predicted by Eq. (16), the
distorted temperature profile can be restored [see Fig. 2(f)].
Therefore, the particle becomes invisible with infrared detec-
tion, and thermal invisibility is achieved with a thermal dipole.

IV. LABORATORY EXPERIMENTS IN
TWO DIMENSIONS

We also perform laboratory experiments to validate the the-
oretical analyses and finite-element simulations. We fabricate
the sample based on a copper plate (400 W m−1 K−1). Air
holes (0.026 W m−1 K−1) are engraved on the copper plate
via laser cut, which makes the effective thermal conductivity
of the corresponding region 200 W m−1 K−1 [see the inset
in Fig. 3(a)]. The upper and lower surfaces are, respectively,
covered with transparent plastic and foamed plastic (which
are both insulated) to reduce the negative effects of infrared
reflection and thermal convection.

The designed power of the thermal dipole is 22 620 W
for the heater and −22 620 W for the cooler, which is an
extremely large value. On the one hand, it maintains the
uniform thermal field of the matrix. On the other hand, it
generates a higher (or lower) temperature inside the heater
(or cooler) than the hot (or cold) source. However, the higher
(or lower) temperature inside the heater (or cooler) does not
contribute to the effect of thermal invisibility because only the
edge temperature of the heater (or cooler) makes sense. Such
a statement can be understood by the uniqueness theorem
in thermotics [21]. Therefore, we require only to keep the
temperature of the heater (or cooler) at 325 (or 281) K to
achieve thermal invisibility as ensured by the uniqueness
theorem in thermotics. The two temperatures can be directly

FIG. 4. Effects of the thermal dipole on thermal invisibility. (a) The dipole-driven temperature distribution. (b) The temperature distribution
when the thermal conductivities of the matrix and particle are the same (say, 400 W m−1 K−1). (c) The matrix temperature-difference
distribution. In (d) and (e), we explore the effects of two parameters (l and rd ) on thermal invisibility. The upper panel in (e) is with rd = 0 cm,
say, point heater and cooler of the dipole. The lower panel in (e) is with l = 2 cm.

062108-5



LIUJUN XU, SHUAI YANG, AND JIPING HUANG PHYSICAL REVIEW E 100, 062108 (2019)

obtained from the finite-element simulation [Fig. 2(f)], and
they are dependent on the radius of the heater (or cooler).
Thus, the thermal dipole can be realized by a ceramic heater
and an ice-water bag. Since the heat capacity of water is
4.2 × 103 J kg−1 K−1 (a very large value), it can maintain a
constant temperature for several minutes, which is enough for
our steady experiments.

We measure the sample between the hot source (323 K)
and the cold source (283 K) with a Flir E60 infrared camera.
The measured results without and with a thermal dipole
are presented in Figs. 3(b) and 3(c), respectively. We also
perform finite-element simulations based on the structure
presented in Fig. 3(a), and set the thermal dipole at two
constant temperatures [see Figs. 3(d) and 3(e)]. The experi-
mental results [Figs. 3(b) and 3(c)] and finite-element sim-
ulations [Figs. 2(d), 2(f), 3(d), and 3(e)] both validate that
the thermal dipole is reliable and flexible to achieve thermal
invisibility.

V. DISCUSSIONS OF THE TWO-DIMENSIONAL RESULTS

There is only one approximation (say, r � l) in the whole
process to ensure the validity of Eq. (4). Therefore, we discuss
the effect of this approximation on thermal invisibility. We
compare our dipole-driven result [Fig. 4(a), whose parameters
are the same as those for Fig. 2(f)] with a reference [Fig. 4(b)].
Clearly, the matrix temperature distributions are totally the
same. We also plot the matrix temperature-difference dis-
tribution (�T = T1 − T2) to present quantitative analyses
[see Fig. 4(c)]. The maximum value of the tempera-
ture difference (�Tmax) is 0.04 K. Compared with the
temperature difference between the hot and cold sources
(�T0 = 40 K), the relative error (�Tmax/�T0) is only 0.1%,
which shows the excellent performance of the dipole-driven
scheme.

Clearly, relative errors can reflect the effect of the ther-
mal dipole on thermal invisibility. Therefore, we calculate
�Tmax/�T0 with different rd (the radius of the heater or
cooler) and l (the distance between the heater and cooler)
[Fig. 4(d)], and plot two curves showing �Tmax/�T0 chang-
ing with l/(2rp) and 2rd/l [Fig. 4(e)]. The upper curve in
Fig. 4(e) shows that the performance of the thermal dipole
decreases with the increment of l/(2rp). When l/(2rp) → 0
(say, l → 0), �Tmax/�T0 → 0, which indicates the perfect
performance. However, the lower curve in Fig. 4(e) shows
that the performance of the thermal dipole remains unchanged
with the increment of 2rd/l . Therefore, only one parameter
(say, the distance l) mainly affects the effect of the ther-
mal dipole on thermal invisibility, and the shorter is the
better.

We also perform transient simulations based on the ex-
perimental settings presented in Fig. 3(a) [see Fig. 5]. The
transient behavior is good when the initial temperature is
set at the middle temperature of the hot and cold sources.
Figures 5(a)–5(d) are references without a thermal dipole. The
distorted matrix isotherms make the particle in the center vis-
ible. By contrast, the straight matrix isotherms in Figs. 5(e)–
5(h) demonstrate that the thermal dipole can realize thermal
invisibility in transient regimes.

FIG. 5. Transient simulations based on the structure presented
in Fig. 3(a). The heater and cooler of the thermal dipole are set
at constant temperatures as applied in experiments. Results (a–d)
without and (e–h) with the thermal dipole, respectively. The initial
temperature is set at 303 K.

VI. RESULTS IN THREE DIMENSIONS

In what follows, we use primes to denote three dimensions.
The matrix thermal field (generated by the external uniform
thermal field G′

0), denoted as G′
me, can be expressed as

G′
me = −∇T ′

me. (17)

T ′
me is the temperature distribution given by [19]

T ′
me = −G′

0r cos θ − κ ′
m − κ ′

p

2κ ′
m + κ ′

p

r′3
p G′

0r−2 cos θ + T ′
0 . (18)
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FIG. 6. Finite-element simulations in three dimensions. The simulation box is 20 × 20 × 20 cm3; r′
p = 6 cm and l ′ = 2 cm. The thermal

conductivities of the particle and the matrix in (a) are 200 and 400 W m−1 K−1, respectively, and those in (b) are the same (say, 400 W m−1 K−1)
for comparison. The thermal dipole moment in (a) should be 36.2 W m as required by Eq. (30), which leads to Q′ = 1810 W. The heater and
cooler of the thermal dipole have a radius 0.5 cm. The temperatures of the hot source and the cold source are set at 323 and 283 K. (c) The
matrix temperature-difference distribution.

The matrix thermal field (generated by the thermal dipole),
denoted as G′

md , can be expressed as

G′
md = −∇T ′

md . (19)

T ′
md is the temperature distribution given by

T ′
md = 3M ′

4π (2κ ′
m + κ ′

p)
r−2 cos θ + T ′

0 . (20)

Detailed derivations of Eq. (20) are as follows. The general
solution to the heat conduction equation in three dimensions
is [19]

T =
∞∑

i=0

(Air
−1/2+√

1/4+i(i+1) + Bir
−1/2−√

1/4+i(i+1))Pi(cos θ ),

(21)

where Pi is the Legendre polynomial. The boundary condi-
tions are given by the continuous temperatures and heat fluxes,
which have the same mathematical forms as Eqs. (6) and (7).
We perform similar limit analyses to determine the forms
of T ′

pd and T ′
md . We suppose r′

p → ∞, and then the particle
temperature distribution (generated by the thermal dipole) in
three dimensions can be expressed as

T ′
pd (r′

p → ∞) = Q′

4πκ ′
p

r′−1
+ + −Q′

4πκ ′
p

r′−1
− = Q′l ′

4πκ ′
p

r−2 cos θ

= M ′

4πκ ′
p

r−2 cos θ. (22)

Equation (22) is valid only when r � l ′ (or l ′ → 0). The tem-
perature distribution of a thermal dipole in three dimensions
is characterized by r−2 cos θ . We further consider a finite r′

p.
Similar to the analyses in two dimensions, T ′

pd and T ′
md can be

concluded as

T ′
pd = M ′

4πκ ′
p

r−2 cos θ + α′r cos θ + T ′
0 , (23)

T ′
md = β ′r−2 cos θ + T ′

0 . (24)

Solving Eqs. (6), (7), (23), and (24), the undetermined coeffi-
cients can be derived:

α′ = −M ′(κ ′
m − κ ′

p)

2πr′3
p κ ′

p(2κ ′
m + κ ′

p)
, (25)

β ′ = 3M ′

4π (2κ ′
m + κ ′

p)
. (26)

With Eq. (26), Eq. (24) turns to the form of Eq. (20).
Because of the superposition principle, the matrix thermal

field (generated by the external uniform thermal field and
the thermal dipole together), denoted as G′

s, can be expres-
sed as

G′
s = G′

me + G′
md = −∇T ′

s . (27)

T ′
s is the temperature distribution given by

T ′
s = −G′

0r cos θ

−
[

κ ′
m − κ ′

p

2κ ′
m + κ ′

p

r′3
p G′

0 − 3M ′

4π (2κ ′
m + κ ′

p)

]
r−2 cos θ + T ′

0 .

(28)

Thermal invisibility requires the second term on the right-
hand side of Eq. (28) to be zero:

κ ′
m − κ ′

p

2κ ′
m + κ ′

p

r′3
p G′

0 − 3M ′

4π (2κ ′
m + κ ′

p)
= 0. (29)

Solving Eq. (29), we can derive the thermal dipole moment,

M ′ = (κ ′
m − κ ′

p) f ′G′
0, (30)

where f ′ = 4πr′3
p /3 is the volume of the particle.

We also perform finite-element simulations in three dimen-
sions. We compare the dipole-driven result [Fig. 6(a)] with a
reference [Fig. 6(b)]. The same matrix temperature distribu-
tions indicate the feasibility of realizing thermal invisibility
with a thermal dipole in three dimensions. We also plot the
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FIG. 7. Transient finite-element simulations based on Fig. 6(a):
results (a–d) without and (e–h) with the thermal dipole, respec-
tively. The initial temperature is set at 303 K. The density and the
heat capacity of the particle and the matrix are 8960 kg m−3 and
385 J kg−1 K−1, respectively.

matrix temperature-difference distribution (�T ′ = T ′
1 − T ′

2 )
to perform quantitative analyses [see Fig. 6(c)]. The maximum
value of the temperature difference (�T ′

max) is 0.07 K. Com-
pared with the temperature difference between the hot and
cold sources (�T ′

0 = 40 K), the relative error (�T ′
max/�T ′

0 )
is 0.18%, which exhibits the good performance of the thermal
dipole.

We also show the transient results of thermal invisibility in
three dimensions (see Fig. 7). Figures 7(a)–7(d) are references
without a thermal dipole. Certainly, the particle in the center
is detectable due to the distorted matrix isotherms. However,
the straight matrix isotherms in Figs. 7(e)–7(h) demonstrate
that the thermal dipole works indeed.

VII. CONCLUSION

The dipole-driven scheme has shown the flexibility and
superiority in thermal management, and potential applications
can be expected in infrared signature reduction. For example,
if there is an impurity (with different thermal conductivity
from the matrix) in a system, it will distort the infrared
signature. After applying the dipole-driven scheme, the dis-
tortion could be reduced to ensure a pure infrared signature.
Thermal dipoles may also be used to realize other thermal
phenomena beyond invisibility, such as thermal camouflage
[21–27], and exhibit novel properties in complex systems such
as thermal Janus structures [28] and many-particle systems
[29,30]. Moreover, the properties of thermal quadrupoles may
contain other interesting points. Last but not least, although
the dipole-driven scheme is at the macroscale, it may also be
extended to the nanoscale [31–33].

In summary, we have established the theory of dipole-
assisted thermotics. This theory helps to realize dipole-driven
thermal invisibility by tailoring the thermal dipole moment.
The dipole-driven scheme removes the requirements of singu-
lar and uncommon thermal conductivities, which contribute to
both practical applications and further developments of ther-
mal metamaterials. The theoretical analyses are validated by
both finite-element simulations and laboratory experiments.
Potential applications can be expected in infrared signature
reduction, simplification of thermal metamaterials, etc.
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