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Metathermotics: Nonlinear thermal responses of core-shell metamaterials
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Thermal metamaterials based on core-shell structures have aroused wide research interest, e.g., in thermal
cloaks. However, almost all the relevant studies only discuss linear materials whose thermal conductivities are
temperature-independent constants. Nonlinear materials (whose thermal conductivities depend on temperatures)
have seldom been touched; however, they are important in practical applications. This situation largely results
from the lack of a general theoretical framework for handling such nonlinear problems. Here we study the non-
linear responses of thermal metamaterials with a core-shell structure in two or three dimensions. By calculating
the effective thermal conductivity, we derive the nonlinear modulation of a nonlinear core. Furthermore, we
reveal two thermal coupling conditions, under which this nonlinear modulation can be efficiently manipulated.
In particular, we reveal the phenomenon of nonlinearity enhancement. Then this theory helps us to design a kind
of intelligent thermal transparency devices, which can respond to the direction of thermal fields. The theoretical
results and finite-element simulations agree well with each other. This work not only offers a different mechanism
to achieve nonlinearity modulation and enhancement in thermotics, but also suggests potential applications in
thermal management, including illusion.
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I. INTRODUCTION

Heat management has aroused intensive research interest
due to its wide applications for human beings. One core prob-
lem of heat management is to tailor thermal conductivities
effectively. Fortunately, thermal metamaterials have provided
a powerful method to tailor thermal conductivities with deli-
cately designed structures. Based on thermal metamaterials,
a large amount of novel thermal phenomena have been re-
alized, such as thermal cloaks [1–8], thermal concentrators
[3,4], thermal rotators [9,10], thermal transparency [11–16],
thermal camouflage [17–23], thermal bending [24–27], etc.
To achieve these phenomena, the core-shell structure serves
as a typical scheme. However, the existing research does not
consider the nonlinear effect (nonlinear thermotics) except for
some piecemeal studies [28–32]. Compared with nonlinear
optics [33–38], nonlinear thermotics has attracted much less
attention. This situation largely results from the lack of a
general theoretical framework to handle nonlinear effects in
thermotics.

To solve this problem, here we investigate the thermal
properties of a core-shell structure embedded in a finite ma-
trix. The core is nonlinear, and the shell and the matrix are
linear. Here, the nonlinear core (or linear shell and matrix)
means that the core (or shell and matrix) material has a
temperature-dependent (or temperature-independent) thermal
conductivity; in this case, the corresponding Fourier’s law
of thermal conduction shows a nonlinear (or linear) relation
between the heat flux density and the temperature gradient,
thus called “nonlinear core” (or “linear shell and matrix”).

*jphuang@fudan.edu.cn

Then we establish a general theoretical framework to deal
with nonlinear effects in both two and three dimensions. To
achieve nonlinearity enhancement, we discuss the nonlinear
modulation under two thermal coupling conditions after es-
tablishing the general theory. This is because, under thermal
coupling conditions, the core property can be extended to
the shell. In this way, the core nonlinearity may also be
extended to the shell, which is beneficial for our purpose.
Moreover, thermal coupling conditions largely simplify the
mathematical form of the nonlinear modulation. Results in-
dicate that the nonlinearity enhancement can appear under
one of the coupling conditions. Further, the theory helps us
to propose a kind of intelligent thermal transparency devices,
which become automatically switchable to external tempera-
tures. We also perform finite-element simulations to validate
our theoretical predictions, and they agree well with each
other.

II. THEORY

A. Two-dimensional case

We first consider the two-dimensional case; see Fig. 1(a).
The core-shell structure is embedded in a finite square matrix
with width a and temperature-independent (namely, linear)
thermal conductivity κm. The shell with radius r2 has an
anisotropic linear thermal conductivity κ

↔
s = diag(κrr, κθθ ) in

cylindrical coordinates (r, θ ). The core with radius r1 has a
temperature-dependent (i.e., nonlinear) thermal conductivity
κc(T ) given by [32]

κc(T ) = κ (0)
c + χcT α, (1)

where κ (0)
c is the temperature-independent (or linear) part,

χc and T , respectively, represent nonlinear coefficient and

2470-0045/2019/99(4)/042144(7) 042144-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.042144&domain=pdf&date_stamp=2019-04-29
https://doi.org/10.1103/PhysRevE.99.042144


SHUAI YANG, LIUJUN XU, AND JIPING HUANG PHYSICAL REVIEW E 99, 042144 (2019)

FIG. 1. Schematic diagrams of (a) two-dimensional or (b) three-
dimensional core-shell structure in Cartesian coordinate system;
(b) only shows one eighth of the structure for the sake of clarity. The
core or shell radius is r1 or r2; the core, shell, and matrix have thermal
conductivities of κc(T ), κ

↔
s, and κm, respectively. Other details can be

found in the text.

temperature, and α can be any real number. We assume that
the core is weakly temperature dependent (or nonlinear), say
χcT α � κ (0)

c . Regarding Eq. (1), it becomes necessary for us
to add two remarks as follows. On one hand, we need to point
out that, in nonlinear optics, dielectric permittivities have a
similar nonlinear expression because of their dependence on
the electric-field component of electromagnetic waves. But,
this electric field is mathematically analogous to the temper-
ature gradient in thermotics, rather than the temperature (T )
as adopted in Eq. (1). This fact implies that new physics
may be expected from Eq. (1). On the other hand, Eq. (1)
has realistic implications because almost all materials have

temperature-dependent thermal conductivities (certainly, the
dependence could be weak or strong). Particularly, thermal
conductivity κc could increase as T either increases [39] or
decreases [40].

Then, the effective thermal conductivity of the core-shell
structure κe1(T ) [15] reaches

κe1(T ) = uκrr
κc(T ) + uκrr + [κc(T ) − uκrr]pu

1

κc(T ) + uκrr − [κc(T ) − uκrr]pu
1

, (2)

and that of the core-shell structure plus the matrix κe2(T ) [14]
turns to be

κe2(T ) = κm
κe1(T ) + κm + [κe1(T ) − κm]p2

κe1(T ) + κm − [κe1(T ) − κm]p2
, (3)

where p1 = r2
1/r2

2 , p2 = πr2
2/a2, and u = √

κθθ/κrr . The di-
rect use of the results from Refs. [14] and [15] is valid in
the paper. The reasons lie in that (i) the nonlinear term is
smaller than the linear term, and thus the spatial fluctuations
of the thermal conductivity are small; (ii) we assume that
T is the temperature at the center of the structure. So the
assumptions can average over the spatial fluctuations of the
thermal conductivity. Therefore, the results from Refs. [14]
and [15] are approximately valid and still contributing.

Equation (3) allows us to do Taylor expansion up to infinite
terms. In the following, we keep the terms up to T 3α , and
neglect the other terms,

κe2(T ) = κ
(0)
e2 + χeT α + βeT 2α + γeT 3α + O(T 4α ), (4)

where κ
(0)
e2 , χe, βe, and γe are respectively

κ
(0)
e2 = κm

κ
(0)
e1 + κm + (

κ
(0)
e1 − κm

)
p2

κ
(0)
e1 + κm − (

κ
(0)
e1 − κm

)
p2

, (5)

χe = 16u2κ2
rrκ

2
m p2 pu

1χc
{
uκrr (p2 − 1)

[
κ

(0)
c + uκrr + (

κ
(0)
c − uκrr

)
p1

u
] + κm(p2 + 1)

[
κ

(0)
c + uκrr − (

κ
(0)
c − uκrr

)
p1

u
]}2 , (6)

βe = 16u2κ2
rrκ

2
m p2 pu

1χ
2
c

[
uκrr

(
pu

1 + 1
)
(p2 − 1) + κm

(
pu

1 − 1
)
(p2 + 1)

]

{
uκrr (p2 − 1)

[
κ

(0)
c + uκrr + (

κ
(0)
c − uκrr

)
p1

u
] + κm(p2 + 1)

[
κ

(0)
c + uκrr − (

κ
(0)
c − uκrr

)
p1

u
]}3 , (7)

γe = 16u2κ2
rrκ

2
m p2 pu

1χ
3
c

[
uκrr

(
pu

1 + 1
)
(p2 − 1) + κm

(
pu

1 − 1
)
(p2 + 1)

]2

{
uκrr (p2 − 1)

[
κ

(0)
c + uκrr + (

κ
(0)
c − uκrr

)
p1

u
] + κm(p2 + 1)

[
κ

(0)
c + uκrr − (

κ
(0)
c − uκrr

)
p1

u
]}4 . (8)

Here κ
(0)
e2 is the linear part of the thermal conductivity of the core-shell structure and the matrix, and κ

(0)
e1 =

uκrr[κ (0)
c + uκrr + (κ (0)

c − uκrr )pu
1]/[κ (0)

c + uκrr − (κ (0)
c − uκrr )pu

1] is the the linear part of the thermal conductivity of the
core-shell structure.

Equation (4) clearly shows that the low-order nonlinearity [Eq. (1)] can induce not only the same order nonlinearity χeT α ,
but also the high-order nonlinearities (i.e., βeT 2α and γeT 3α). Nevertheless, owing to χcT α � κ (0)

c in Eq. (1), it is evident to
conclude that χeT α � βeT 2α � γeT 3α in Eq. (4). So, in what follows, we only focus on χeT α . To proceed, we define the
nonlinear modulation η = χe/χc, which is given by

η= 16u2κ2
rrκ

2
m p2 pu

1{
uκrr (p2 − 1)

[
κ

(0)
c + uκrr + (

κ
(0)
c − uκrr

)
p1

u
] + κm(p2 + 1)

[
κ

(0)
c + uκrr − (

κ
(0)
c − uκrr

)
p1

u
]}2 . (9)

This equation is the general expression of nonlinear modu-
lation in two dimensions. Then we are allowed to discuss
the nonlinear modulation η in some special cases, say, under
thermal coupling conditions. Namely, when the core-shell

Structure satisfies

κ (0)
c + uκrr = 0, (10)

κm = κ (0)
c , (11)
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FIG. 2. Two-dimensional simulation results. (a1)–(c1) show the nonlinear modulation η (= χe/χc) under the thermal coupling conditions
determined by Eqs. (10), (11) with three variables: (a1) κθθ /κrr , (b1) p1, and (c1) p2. The solid lines in (a1)–(c1) are calculated from Eq. (12),
and the symbols are obtained from finite-element simulations. The solid lines in (a2)–(c2) are calculated from Eq. (15) under the thermal
coupling conditions determined by Eqs. (13), (14). Other parameters: (a1), (a2) p1 = 0.25 and p2 = π/16; (b1), (b2) κθθ /κrr = 2 and p2 =
π/16; (c1), (c2) κθθ /κrr = 2 and p1 = 0.25; (a1)–(c1) κc(T ) = 400 + 0.05T W/(m K), κs = −√

κrrκθθ = −400 W/(m K) is the effective
scalar thermal conductivity, and κm = 400 W/(m K); (a2)–(c2) κc(T ) = 400 + 0.05T W/(m K), κs = √

κrrκθθ = 400 W/(m K), and κm =
400 W/(m K).

the nonlinear modulation η is simplified as

η = p−u
1 p2. (12)

On the other hand, when the core-shell structure satisfies

κ (0)
c − uκrr = 0, (13)

κm = κ (0)
c , (14)

the nonlinear modulation η becomes

η = pu
1 p2. (15)

Equations (10), (11) and Eqs. (13), (14) are two different
thermal coupling conditions because they establish the rela-
tions among the core, shell, and matrix.

B. Three-dimensional case

The above theory can be extended to three dimen-
sions; see Fig. 1(b). Then κ

↔
s should be redefined as κ

↔
s =

diag(κrr, κθθ , κϕϕ ) in spherical coordinates (r, θ, ϕ) with
κθθ = κϕϕ for simplicity. The effective thermal conductivity
of the core-shell structure [15] in three dimensions can be
expressed as

κe1(T ) = κrr
v1[κc(T ) − v2κrr] − v2[κc(T ) − v1κrr]pw

1

[κc(T ) − v2κrr] − [κc(T ) − v1κrr]pw
1

, (16)

and that of the core-shell structure plus the matrix [14] is

κe2(T ) = κm
κe1(T ) + 2κm + 2[κe1(T ) − κm]p2

κe1(T ) + 2κm − [κe1(T ) − κm]p2
, (17)

where p1 = (r1/r2)3, p2 = 4πr2
3/3a3, v1,2 = −1/2 ±√

1/4 + 2κθθ/κrr , and w = √
1 + 8κθθ/κrr/3.

Similar to the procedure in two dimensions, the nonlinear
modulation is

η = 81κm
2κ2

rrw
2 p2 pw

1{
κrr (1 − p2)

[
v1

(
κ

(0)
c − v2κrr

) − v2
(
κ

(0)
c − v1κrr

)
pw

1

] + κm(2 + p2)
[(

κ
(0)
c − v2κrr

) − (
κ

(0)
c − v1κrr

)
pw

1

]}2 . (18)

Equation (18) is the general expression of nonlinear modulation in three dimensions. Then we will also discuss the nonlinear
modulation under thermal coupling conditions.

When the core-shell structure satisfies

κ (0)
c − v2κrr = 0, (19)

κm = κ (0)
c , (20)
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FIG. 3. Three-dimensional simulation results. The solid lines in (a1)–(c1) [or (a2)–(c2)] are calculated from Eq. (21) [or Eq. (24)], and the
symbols are obtained from finite-element simulations. Other parameters are the same as those in Fig. 2 except for (a1), (a2) p1 = 0.125 and
p2 = π/48, (b1), (b2) κθθ /κrr = 2 and p2 = π/48, and (c1), (c2) κθθ /κrr = 2 and p1 = 0.125.

the nonlinear modulation turns to be

η = p−w
1 p2. (21)

On the other hand, when the core-shell structure meets

κ (0)
c − v1κrr = 0, (22)

κm = κ (0)
c , (23)

the nonlinear modulation reaches

η = pw
1 p2. (24)

Similarly, Eqs. (19), (20) and Eqs. (22), (23) are also two
different thermal coupling conditions in three dimensions.

III. THEORETICAL CALCULATION VERSUS
FINITE-ELEMENT SIMULATION

We have established a theoretical framework to handle the
nonlinear modulation (η) in both two and three dimensions,
especially under thermal coupling conditions. Now we are in a
position to validate the predicted η with finite-element simula-
tions. For this realization, we first calculate the effective ther-
mal conductivity κe2(T ) with J/|∇T0|, where J is the overall
average heat flux obtained from COMSOL MULTIPHYSICS [41].
In Eq. (4), κ

(0)
e2 can be theoretically calculated with Eq. (5).

T can be approximately regarded as the temperature at the
center since the nonlinearity of the system is not that strong. In
this way, we can derive η with [κe2(T ) − κ

(0)
e2 ]/(χcT α ) based

on finite-element simulations; see symbols in Figs. 2 and 3.
Then we explore the nonlinear modulation η when thermal
coupling conditions are satisfied, namely, Eqs. (12), (15) for

two dimensions and Eqs. (21), (24) for three dimensions in
theory; see lines in Figs. 2 and 3.

First we analyze the two-dimensional case whose results
are presented in Fig. 2. Figures 2(a1)–2(c1) show the non-
linear modulation under the thermal coupling condition deter-
mined by Eqs. (10), (11). According to the theoretical analysis
of Eq. (12), the nonlinear modulation is related to three key
parameters, say, the degree of shell anisotropy κθθ/κrr , the
core fraction in the shell p1, and the core-shell fraction in
the matrix p2. It is noted that the maximum value of p2 is
π/4 because a circle cannot fill up a square. The nonlinear
modulation η can be well manipulated and enhanced under
the thermal coupling condition determined by Eqs. (10), (11).
Here the word “enhanced” means η > 1, which indicates
that χe (effective nonlinear coefficient) is counterintuitively
larger than χc (the core’s nonlinear coefficient). However, the
nonlinear modulation η cannot be enhanced (namely, η is
always smaller than 1) under the thermal coupling condition
determined by Eqs. (13), (14), no matter how one adjusts the
three associated parameters.

Then we discuss the three-dimensional case whose results
are displayed in Fig. 3. Figures 3(a1)–3(c1) [or Figs. 3(a2)–
3(c2)] display the thermal coupling condition determined by
Eqs. (19), (20) [or Eqs. (22), (23)]. A similar conclusion
can be obtained. That is, only the thermal coupling con-
dition determined by Eqs. (19), (20) succeeds in achieving
nonlinearity enhancement (i.e., η > 1), whereas the thermal
coupling condition determined by Eqs. (22), (23) fails.

As shown in Figs. 2 and 3, the finite-element simulation
results agree well with the theoretical calculations, and the
nonlinearity can be enhanced up to one order of magnitude
when the physical parameters are chosen appropriately.
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FIG. 4. Switchable thermal transparency device: (a) is the schematic diagram based on the nonlinear core and linear shell and (b), (c)
are corresponding finite-element simulation results. (b) is in open state and (c) is in close state. (d) is the schematic diagram based
on the linear core and nonlinear shell and (e), (f) are corresponding finite-element simulation results. (e) is in open state and (f) is in
close state. Other parameters in (a)–(f): κca = 400 + 70 × (T − 293) W/(m K), κcb = 400 − 70 × (T − 293) W/(m K), κs = 100 W/(m K),
κc = 20 W/(m K), κsa = 400 + 8 × (T − 293) W/(m K), κsb = 400 − 8 × (T − 293) W/(m K), and κm = 200 W/(m K). Here κca, κcb, κsa,
and κsb are temperature dependent, which could, in principle, be designed by using shape memory alloys according to the method proposed in
Refs. [28,31].

IV. APPLICATION OF NONLINEARITY

In addition, based on the proposed theory, here we design
an intelligent (switchable) thermal transparency device; see
Fig. 4.

Traditional thermal transparency can ensure the external
thermal fields are undistorted [11–16]. However, it is indepen-
dent of the direction of the thermal fields, which may lack the

intelligence for controllability between “open” and “close”
state. Here the nonlinear property helps to control the thermal
transparency with respect to different directions of the thermal
fields, thus being called intelligent thermal transparency.

In Figs. 4(a)–4(c), the device has a nonlinear core and
a linear shell. To achieve the effect of switching, here we
split the core into two parts. Two kinds of nonlinear thermal

FIG. 5. Replacing (a) apparent negative thermal conductivity with (b) line sources and (c) point sources. The simulation box of (a)–(c) is
16 × 16 cm. The radii of shell rs and core rc are 3.2 and 1.6 cm, respectively. The thermal conductivities of background material and core
in (a)–(c) are 50 W/(m K). The thermal conductivities of the shells in (a) and (b), (c) are −50 W/(m K) and 20 W/(m K), respectively. Line
sources are applied on the two boundaries of the shell in (b). The temperatures of line sources obey T = 293 − 250r2

c,sx/(x2 + y2) K, where
(x, y) represent the Cartesian coordinates whose origin locates in the center of the simulation box. Point sources with radius 0.1 cm are applied
on the two boundaries of the shell in (c). The temperatures of point sources can be calculated with T = 293 − 250r2

c,sx/(x
2 + y2) K according

to the source positions.
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conductivities can respond to different boundary conditions
(the direction of heat flux) automatically. When the heat flux
goes from left to right [Fig. 4(b)], the temperature is uniformly
distributed in the matrix, thus yielding the phenomenon of
thermal transparency. In this case, the device is in “open”
state; see Fig. 4(b). Conversely, if the heat flux moves from
right to left [Fig. 4(c)], the core-shell structure will affect
the temperature distribution of matrix, thus eliminating the
behavior of thermal transparency. As a result, the device is
in “close” state; see Fig. 4(c). Namely, the switching function
of the thermal transparency device is achieved as expected.

Also, in Figs. 4(d)–4(f), we design a nonlinear shell and a
linear core. Similar results can also be achieved; see Figs. 4(e)
and 4(f). A comment on Figs. 4(a)–4(c) and 4(d)–4(f) is that,
in spite of the similar switching phenomena, the nonlinearity
of the shell [Fig. 4(d)] can be smaller than that of the core
[Fig. 4(a)], which means that the manipulation of the shell
nonlinearity is more efficient.

V. DISCUSSION AND CONCLUSION

Nonlinearity (namely, thermally responsive thermal con-
ductivity) is of great significance to achieve thermal manage-
ment. Although natural materials such as copper may exhibit
weak nonlinearity, they are still not strong enough to achieve
practical nonlinear effects in certain situations. In this work,
we have investigated the nonlinear modulation of a core-
shell structure embedded in a finite matrix (only the core is
nonlinear). Under two thermal coupling conditions, the non-
linear modulation can be largely simplified, and only depends
on three key parameters: the degree of shell anisotropy, the
core fraction in the shell, and the core-shell fraction in the
matrix. Therefore, we can achieve the aim of regulating
the nonlinearity by the three tunable parameters. In particular,

the nonlinear modulation will be effectively enhanced under
the thermal coupling conditions determined by Eqs. (10), (11)
and Eqs. (19), (20). Our work lays the foundation for studying
the nonlinear property of a core-shell structure, and further
work can be expected to explore more complicated cases like
nonlinear shells or nonlinear matrices.

In the process of achieving nonlinearity enhancement,
apparent negative thermal conductivities [42–45] are applied,
which means that the direction of heat flux is from low temper-
ature to high temperature. For this realization, a reliable way
is to add external energy to avoid violating the second law of
thermodynamics. We also perform finite-element simulations
to verify the feasibility of apparent negative thermal conduc-
tivities; see Fig. 5. We add external line sources [Fig. 5(b)] and
point sources [Fig. 5(c)] on the two boundaries of the shell,
and set the thermal conductivity of the shell to be positive. The
temperature distributions in Figs. 5(b) and 5(c) are the same
as that in Fig. 5(a). Therefore, it is contributing to add external
energy. Such point sources can be realized by experiment; see
the experimental setup shown in Fig. 1 of Ref. [46].

In summary, this work extends nonlinear research from
optics to thermotics, but with essential difference in the defi-
nition of nonlinearity [Eq. (1)]. We have proposed a different
mechanism to modulate nonlinear thermal responses, and
achieved both thermal nonlinearity enhancement and intelli-
gent thermal transparency under various kinds of conditions.
We expect that the nonlinearity studied in this work could
also have potential applications in heat management including
illusion.
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