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We introduce the phenomenon of golden touch from myth to thermotics. We define golden touch as extending
the core property to a shell with an extremely small core fraction. We obtain the requirement of golden touch
by making the effective thermal conductivity of the core-shell structure equal to the thermal conductivity of the
core. We summarize three types (A, B, and C) of golden touch in two dimensions, and only two types (A and B)
of golden touch in three dimensions. We theoretically analyze the distinct properties of different types of golden
touch by delicately designing the anisotropic thermal conductivity of the shell. Golden touch is also validated
by finite-element simulations which echo the theoretical analyses. Golden touch has potential applications in
thermal camouflage, thermal management, etc. Our work not only lays the foundation for golden touch in
thermotics, but also provides guidance for exploring golden touch in other diffusive fields like electrostatic and
magnetostatic fields.
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I. INTRODUCTION

Golden touch is a long-standing dream of human beings
which exists only in myth. To uncover the secret of golden
touch, we should first define what golden touch is. We refer to
the core-shell structure as our research object; see the middle
structure in Fig. 1. For simplicity of understanding, we may
imagine the shell as “stone” and the core as “gold.” Then
golden touch can be defined as extending the core property
to the shell with zero core fraction, i.e., an imaginary core.
Such a definition is what the golden touch in myth describes.

In spite of the difficulty, we do not give up the exploration
of golden touch. Although we cannot extend the core property
to the shell with zero core fraction, we may resort to some
loosened requirements which are physical. Hence, here we
define golden touch as extending the core property to the shell
with extremely small core fraction. We only replace the re-
quirement of zero core fraction with extremely small core
fraction. The redefinition of golden touch does not affect the
inconceivable phenomenon and makes possible realization.
Concretely speaking, a normal case presents only a slow
increment with core fraction; see the black (lower right) line
in Fig. 1. In other words, if the effective core-shell property
is expected to exhibit the core property, the core fraction
should be 1, which echoes with the common sense of effective
medium theories [1–4]. By contrast, golden touch presents a
steep increment with core fraction; see the red (upper left) line
in Fig. 1. In other words, “stone” can become “gold” with an
extremely small “gold” fraction. This is what we expect to
obtain.

In this work, we focus on the thermal property of the core-
shell structure, i.e., effective thermal conductivity. In fact,
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research on artificial structures has realized many unique phe-
nomena, such as thermal cloaks [5–10], thermal concentrators
[6,11–14], thermal camouflage [15–21], etc. Differently from
these, we carefully design the anisotropic shell to realize
golden touch, especially when the thermal conductivity of
the shell is abnormal (κθθ/κrr < 0 for two dimensions and
κθθ/κrr < −1/8 for three dimensions). The potential appli-
cation of golden touch is to dramatically reduce the use of
special materials (only with extremely small core fraction).
Moreover, golden touch may also provide guidance for ther-
mal camouflage, such as size misleading.

II. THEORY OF GOLDEN TOUCH

We first discuss the golden touch in two-dimensional core-
shell structure; see Fig. 2(a). We set the core with radius rc

and scalar thermal conductivity κc, and the shell with radius
rs and tensorial thermal conductivity κs = diag(κrr, κθθ ). We
can derive the effective thermal conductivity of the core-shell
structure κe as

κe(κθθ/κrr > 0) = mκrr
κc + mκrr + (κc − mκrr )(

√
p)2m

κc + mκrr − (κc − mκrr )(
√

p)2m
,

(1)

κe(κθθ/κrr < 0) = nκrr
κc + nκrr tan(n ln

√
p)

nκrr − κc tan(n ln
√

p)
, (2)

where m = √
κθθ/κrr , n = √−κθθ/κrr , and p = (rc/rs)2 is

the core fraction. A detailed derivation can be found in the
Appendix.

We calculate the limit of Eqs. (1) and (2) to discuss the
property when κθθ/κrr = 0 and find that they tend to the
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FIG. 1. Schematic diagram of golden touch (vs normal case).
“Gold” and “stone” are metaphors for simplicity of understanding.

same value

κe(κθθ/κrr = 0) = κrr
κc − κθθ ln

√
p

κrr − κc ln
√

p
. (3)

Note that κe is still dependent on κθθ despite κθθ/κrr = 0,
because there is a condition of κrr � κθθ ( �= 0) to satisfy
κθθ/κrr = 0. Moreover, κθθ/κrr = 0 can be regarded as the
demarcation point according to Eqs. (1)–(3).

As the definition suggests, golden touch should first ensure
that the core property can be extended to the shell, which can
be mathematically expressed as

κe = κc. (4)

Notice that κe(p = 0) �= κc, otherwise the shell is just the
same as the core, which is trivial.

Second, golden touch should ensure the extremely small
core fraction, which can be mathematically expressed as

p = 0+. (5)

FIG. 2. Golden touch in (a, b) two dimensions and (c, d) three di-
mensions. Panels (a, c) and (b, d), respectively, present the structures
and classifications of golden touch.

Equations (4) and (5) can be regarded as the mathematical
definition of golden touch.

After investigating Eqs. (1)–(3), we find three types (A, B,
and C) of golden touch in two dimensions which satisfy the
requirements of Eqs. (4) and (5):

Type A → κθθ/κrr > 0: κc + mκrr = 0, (6)

Type B → κθθ/κrr < 0:
√

−κθθ/κrr ln
√

p = −Z+π, (7)

Type C → κθθ/κrr ≈ 0: κθθ ≈ 0 with κrr � κ1, (8)

where Z+(= 1, 2, 3, . . . ) is positive integers. The three types
(A, B, and C) of golden touch are clearly presented in
Fig. 2(b), which respectively correspond to the >, <, and ≈
demarcation point.

We then discuss the golden touch in a three-dimensional
core-shell structure; see Fig. 2(c). We set the core with radius
rc and scalar thermal conductivity κc, and the shell with radius
rs and tensorial thermal conductivity κs = diag(κrr, κθθ , κϕϕ )
with κθθ = κϕϕ for brevity. We can derive the effective thermal
conductivity of the core-shell structure κe as

κe(κθθ/κrr > −1/8)

= κrr
u1(κc − u2κrr ) − u2(κc − u1κrr )( 3

√
p)u1−u2

(κc − u2κrr ) − (κc − u1κrr )( 3
√

p)u1−u2
, (9)

κe(κθθ/κrr < −1/8)

= κrr
4vκc + [2κc + (1 + 4v2)κrr] tan(v ln 3

√
p)

4vκrr − 2(2κc + κrr ) tan(v ln 3
√

p)
, (10)

where u1,2=(−1±√
1+8κθθ/κrr )/2, v=√−1−8κθθ/κrr/2,

and p = (rc/rs)3 is the core fraction. Detailed derivation can
be found in the Appendix.

We calculate the limit of Eqs. (9) and (10) to discuss the
property when κθθ/κrr = −1/8, and find that they tend to the
same value:

κe(κθθ/κrr = −1/8) = κrr
4κc + (2κc + κrr ) ln 3

√
p

4κrr − 2(2κc + κrr ) ln 3
√

p
. (11)

Here κθθ/κrr = −1/8 can be regarded as the demarcation
point according to Eqs. (9)–(11).

We also calculate the effective thermal conductivity when
κθθ/κrr = 0 as a special case:

κe(κθθ/κrr = 0) = κrr
κc 3

√
p

κrr + κc(1 − 3
√

p)
. (12)

Here κe is independent of κθθ which is different from the two-
dimensional result of Eq. (3).

According to the mathematical definition of golden touch
Eqs. (4) and (5), we investigate Eqs. (9)–(12) but find only two
types (A and B) of golden touch:

Type A → κθθ/κrr > −1/8: κc − u2κrr = 0, (13)

Type B → κθθ/κrr < −1/8: (
√

−1 − 8κθθ/κrr/2) ln 3
√

p

= −Z+π, (14)

where Z+(= 1, 2, 3, . . . ) is positive integers. The two types
(A and B) of golden touch are clearly presented in Fig. 2(d),
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FIG. 3. Theoretical analyses of two-dimensional golden touch for (a–c) type A, (d–f) type B, and (g–i) type C. Concrete parameters:
(a–c) κc = 5 Wm−1 K−1, and the thermal conductivity of the shell is a scalar denoted as κs; (d–f) κc = 5 Wm−1 K−1, κrr = 5 Wm−1 K−1,
(d) n = 1, (e) n = √

5, and (f) n = 5; (g–i) κc = 5 Wm−1 K−1 for solid lines, κc = 10 Wm−1 K−1 for dashed lines, (g) mκrr = 0.1 Wm−1 K−1,
(h) mκrr = −20 Wm−1 K−1, and (i) nκrr = 20 Wm−1 K−1. It should be noted that there are three lines in the left bottom of (b), which are very
close to each other.

which respectively correspond to the > and < demarcation
point. Differently from a two-dimensional system, there is
no type C golden touch in a three-dimensional system, even
though we carefully calculate the effective thermal conduc-
tivity of the core-shell structure when κθθ/κrr = −1/8 [de-
marcation point in three dimensions; Eq. (11)], or κθθ/κrr = 0
[Eq. (12)].

III. THEORETICAL ANALYSES OF GOLDEN TOUCH

We further analyze the distinct properties of different types
of golden touch. For clarity, we discuss the dimensionless
thermal conductivity κe/κc. When κe/κc = 1, the core prop-
erty is extended to the shell.

The two-dimensional results of type A, type B, and type
C golden touch are, respectively, demonstrated in Figs. 3(a)–
3(c), 3(d)–3(f), and 3(g)–3(i). We will give detailed discus-
sions of the three types of golden touch in the following.

Type A: When the requirement of Eq. (6) is strictly sat-
isfied, there is a discontinuous change from −1 to 1 at p =
0; see Fig. 3(a). In other words, the core property can be
extended to the shell with arbitrarily small core fraction once
p �= 0. We increase the thermal conductivity of the shell [see
Fig. 3(b)], and the variation curves become similar to a hyper-
bolic function. When the increment is small enough, golden
touch still works; see the green (lightest) line in Fig. 3(b).
However, when the increment is big, golden touch turns into
the normal case; see the black (darkest) line in Fig. 3(b). We
decrease the thermal conductivity of the shell [see Fig. 3(c)],
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FIG. 4. Theoretical analyses of three-dimensional golden touch for (a–c) type A and (d–f) type B. Concrete parameters: (a–c) κc =
5 Wm−1K−1, and the thermal conductivity of the shell is a scalar denoted as κs; (d–f) κc = 5 Wm−1K−1, κrr = 5 Wm−1K−1, (d) v = √

7/2,
(e) v = √

39/2, and (f) n = √
199/2.

and the variation curves become monotonically increasing
without a discontinuous change. When the decrement is small
enough, golden touch still works; see the green (lightest) line
in Fig. 3(c). However, when the decrement is big, golden
touch turns into the normal case; see the black (darkest) line in
Fig. 3(c). Therefore, type A golden touch can work perfectly
with arbitrarily small core fraction, but requires a special
relation of thermal conductivities between the core and the
shell.

Type B: In fact, as long as κθθ/κrr < 0, the phenomena of
golden touch will exist, for the curve value ranges from −∞
to +∞ and presents quasiperiodicity; see Figs. 3(d)–3(f). The
quasiperiodicity is determined by the shell anisotropy: from
left to right of Figs. 3(d)–3(f), the smaller κθθ/κrr is (or the
bigger n is), the denser quasiperiodicity is. Therefore, type
B golden touch can work perfectly without requirement of
thermal conductivities between the core and the shell, but
with a certain core fraction determined by Eq. (7); see the
dots in Figs. 3(d)–3(f). Note that we use ln p (ranging from
−∞ to 0) as the abscissa to show the infinite numbers of
quasiperiodicity, and hence the core fraction can also be set
as arbitrarily small.

Type C: The parameters of Eq. (8) are distributed in four
quadrants; see Fig. 2(b). When κθθ/κrr is in the third quadrant,
type C golden touch possesses all the properties of type
A golden touch. When κθθ/κrr is in the second (or forth)
quadrant, type C golden touch possesses all the properties of
type B golden touch. Even so, we still regard type C golden
touch as a separate classification, for it possesses different
properties from type A and type B golden touch. Concretely

speaking, type A and type B golden touch require certain
thermal conductivity [Eq. (6)] or core fraction [Eq. (7)], but
these requirements disappear in type C golden touch. In other
words, any thermal conductivity can be extended with any
core fraction. The costs are (I) the requirement of Eq. (8),
and (II) the core fraction can be only extremely small rather
than arbitrarily small, which is dependent on the shell. We
take the parameters in the first quadrant as an example; see
Fig. 3(g). Solid and dashed lines, respectively, correspond
to the different thermal conductivities of cores. With the
decrement of m(= √

κθθ/κrr → 0), the core property can be
extended to shell regardless of the core conductivities; see the
green (lightest) solid and dashed lines in Fig. 3(g). We also
investigate parameters in the third and forth quadrants, and
the results are, respectively, shown in Figs. 3(h) and 3(i) which
are similar to those in Fig. 3(g). Note that the reason why the
variation curves in Fig. 3(i) do not present the quasiperiodicity
with κθθ/κrr < 0 is that the quasiperiodicity becomes sparse
with small n (as discussed in type B golden touch), and
thus exists in extremely small core fraction, which cannot be
shown under the abscissa of p.

The three-dimensional results of type A and type B golden
touch are, respectively, demonstrated in Figs. 4(a)–4(c) and
4(d)–4(f). Except for that there is no type C golden touch in
three dimensions, type A and type B golden touch in three
dimensions are similar to those in two dimensions.

Type A: When the requirement of Eq. (13) is strictly
satisfied, there is a discontinuous change from −0.5 to 1 at
p = 0; see Fig. 4(a). We increase the thermal conductivity
of the shell [see Fig. 4(b)], and the variation curves become
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FIG. 5. Finite-element simulations of two-dimensional
golden touch for (a) type A, (b) type B, (c) type C, and
(d) reference. Concrete parameters: (a–d) simulation box is
20 × 20 cm, rs = 6.4 cm, rc = 0.64 cm, κc = κm = 5 Wm−1K−1,
(a) κs = −5.001 Wm−1K−1, (b) κs = diag(5, −9.308) Wm−1K−1,
(c) κs = diag(400, 2.5 × 10−6) Wm−1K−1, and (d) κs =
5 Wm−1K−1. Dashed lines in panel (d) are used to show the
imaginary location of the core-shell structure for simplicity of
comparison. The left and right boundaries are, respectively, set at
313 K and 273 K, and other boundaries are insulated. White lines
represent isotherms.

similar to a hyperbolic function. When the increment is small
enough, golden touch still works; see the green (lightest) line
in Fig. 4(b). However, when the increment is big, golden touch
turns into the normal case; see the black (darkest) line in
Fig. 4(b). We decrease the thermal conductivity of the shell
[see Fig. 4(c)], and the variation curves become monotonically
increasing without a discontinuous change. When the decre-
ment is small enough, golden touch still works; see the green
(lightest) line in Fig. 4(c). However, when the decrement is

big, golden touch turns into the normal case; see the black
(darkest) line in Fig. 4(c). Therefore, type A golden touch
can work perfectly with arbitrarily small core fraction, but
requires a special relation of thermal conductivities between
the core and the shell.

Type B: As long as κθθ/κrr < −1/8, the phenomenon of
golden touch will exist, for the curve value ranges from −∞
to +∞ and present quasiperiodicity; see Figs. 4(d)–4(f). The
quasiperiodicity is determined by the shell anisotropy: from
left to right in Figs. 4(d)–4(f), the smaller κθθ/κrr is (or the
bigger v is), the denser quasiperiodicity is. Therefore, type
B golden touch can work perfectly without the requirement
of thermal conductivities between the core and the shell, but
with certain core fraction determined by Eq. (14); see the dots
in Figs. 4(d)–4(f). We also use ln p (ranging from −∞ to 0) as
the abscissa to show the infinite numbers of quasiperiodicity,
and hence the core fraction can also be set as arbitrarily small.

IV. FINITE-ELEMENT SIMULATIONS
OF GOLDEN TOUCH

We have theoretically analyzed the distinct properties of
different types of golden touch in both two and three di-
mensions. Now we are in the position to demonstrate finite-
element simulations for an intuitive understanding of golden
touch. We put the core-shell structure into a matrix (κm)
with the same thermal conductivity of the core (κm = κc).
If golden touch does extend the core property to shell, the
external thermal field will keep unchanged, namely, uniform
temperature gradient. To be mentioned, although the core
fraction of type A and type B golden touch can be arbitrarily
small, we have to set the core fraction as a reasonable finite
small value to perform finite-element simulations based on the
commercial software COMSOL Multiphysics [22].

The results of two-dimensional golden touch are presented
in Fig. 5. We set the core fraction as 0.01. Type A, type B,
and type C golden touch are, respectively, designed according
to Eqs. (6)–(8). For type C golden touch, this is not an
exact result (extremely small rather than arbitrarily small),
for the parameters applied for finite-element simulation echo
the green (lightest) solid line in Fig. 3(g). The same uniform

FIG. 6. Finite-element simulations of three-dimensional golden touch for (a) type A, (b) type B, and (c) reference. Concrete pa-
rameters: (a–c) simulation box is 20 × 20 × 20 cm, rs = 6.4 cm, rc = 1.28 cm, κc = κm = 5 Wm−1 K−1, (a) κs = −2.501 Wm−1 K−1,
(b) κs = diag(−10, 77.455, 77.455) Wm−1 K−1, and (c) κs = 5 Wm−1 K−1. The left and right boundaries are, respectively, set at 463 K
and 423 K, and other boundaries are insulated.
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temperature gradient between the matrix in Figs. 5(a)–5(c)
and Fig. 5(d) validates the theoretically predicted golden
touch.

The results of three-dimensional golden touch are pre-
sented in Fig. 6. We set the core fraction as 0.008. Type A
and type B golden touch are, respectively, designed according
to Eqs. (13) and (14). It is found that the external temperature
distribution in Figs. 6(a)–6(c) is totally the same, which again
validates the golden touch.

V. DISCUSSION AND CONCLUSION

When discussing golden touch, a puzzling phenomenon is
that type C golden touch cannot be extended from two to three
dimensions. In other words, type C golden touch is a unique
phenomenon which exists in only two dimensions. In fact,
low-dimensional heat transfer at a microscopic scale has been
found to have many unique properties, such as the nonconver-
gence effect and size effect of the thermal conductivity [23].
However, the uniqueness of low-dimensional heat transfer
has never been discovered at a macroscopic scale, such as
thermal metamaterials including but not limited to thermal
cloaks [5–10], thermal concentrators [6,11–14], and thermal
camouflage [15–21]. Therefore, type C golden touch might
open a gate to explore unique properties in low-dimensional
heat transfer at a macroscopic scale.

Moreover, type C golden touch in the first quadrant
also seems to be distinct, for it is the only golden touch
which requires no apparent negative thermal conductivity;
see Figs. 2(b) and 2(d). Although apparent negative thermal
conductivity does not exist in nature, it can be realized by
active materials containing heat sources [24–26]. We take
two-dimensional type A golden touch [Fig. 5(a)] as an ex-
ample. We set the thermal conductivity of the shell with a
positive value which is different from that of the core. To
realize the same effect of golden touch, we add continuous
sources [Fig. 7(a)] and discontinuous sources [Fig. 7(b)] on
the boundaries of the shell. The same temperature profile
between Figs. 7(a) and 7(b) and Fig. 5(a) validates that the
scheme of adding sources works indeed. For experimental
realization, Ref. [27] demonstrates a device to realize the dis-
continuous sources, which makes apparent negative thermal
conductivities feasible for experiments.

We also first derive the effective thermal conductivity
under the demarcation point, i.e., κθθ/κrr < 0 for two di-
mensions [Eq. (2)] and κθθ/κrr < −1/8 for three dimensions
[Eq. (10)]. This helps to reveal the quasiperiodic variation
with core fraction; see Figs. 3(d)–3(f) and Figs. 4(d)–4(f),
which is dramatically different from the well-known effec-
tive medium theories like the Maxwell-Garnett formula [28]
and the Bruggeman formula [29]. This may further provide
guidance for exploring nonlinear effects [30] beyond the
framework of the Maxwell-Garnett formula or Bruggeman
formula. Moreover, one reliable approach to realize these
special thermal conductivities is to design multilayer struc-
tures with effective medium theory. In this way, the complex
parameters can be obtained with several homogeneous and
isotropic materials which are easy to get.

In summary, golden touch proposed in this work can
extend the core property to shell with extremely small

FIG. 7. Realization of apparent negative thermal conductivity by
adding (a) continuous sources and (b) discontinuous sources. The
parameters are the same as those in Fig. 5(a), except for the shell
which is set as κs = 1 Wm−1K−1. (a) Continuous sources are applied
on the inner and outer boundaries of the designed shell, which obey
the continuous temperature distribution T = −81.92x/r2

c, s + 293,
where rc = 0.64 cm (rs = 6.4 cm) is the inner (or outer) radius of
the designed shell. x represents abscissa whose origin locates in
the center of the simulation box. For the inner boundary, x ranges
from −rc to rc which makes the temperature T range from 421 K to
165 K; for the outer boundary, x ranges from −rs to rs which makes
temperature T range from 306 K to 280 K. (b) Twelve discontinuous
sources (with radius 0.05 cm) and 36 discontinuous sources (with
radius 0.15 cm) are, respectively, applied on the inner and outer
boundaries. The discontinuous temperatures are calculated from the
continuous temperature distribution in (a) according to the source
abscissas.

core fraction, which has potential applications in thermal
camouflage, thermal management, etc. Furthermore, golden
touch can be directly extended to electrostatics and magne-
tostatics where permittivity and permeability play the same
role as thermal conductivity in thermotics. Golden touch in
magnetostatics may also offer guidance for magnetostatic
camouflage [31–33].
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APPENDIX

The dominant equation of heat conduction is

∇ · (−κ∇T ) = 0, (A1)

where κ and T are, respectively, tensorial thermal conductivity
and temperature.

We firstly discuss the two-dimensional core-shell structure
and put it into an infinite matrix with thermal conductivity κm.
Equation (A1) can be expanded in cylindrical coordinates as

∂

∂r

(
rκrr

∂T

∂r

)
+ ∂

∂θ

(
κθθ

∂T

r∂θ

)
= 0. (A2)
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The general solution of Eq. (A2) is

T (κθθ/κrr > 0) = A0 + B0 ln r +
∞∑

i=1

[Ai sin (iθ ) + Bi cos (iθ )]rim1 +
∞∑

i=1

[Ci sin (iθ ) + Di cos (iθ )]rim2 , (A3)

T (κθθ/κrr < 0) = E0 + F0 ln r +
∞∑

i=1

[Ei sin (iθ ) + Fi cos (iθ )] sin (in ln r) +
∞∑

i=1

[Gi sin (iθ ) + Hi cos (iθ )] cos (in ln r), (A4)

where m1, 2 = ±√
κθθ/κrr , and n = √−κθθ/κrr . Here κθθ/κrr = 0 is the demarcation point.

The temperature distribution of the core (Tc), shell (Ts), and matrix (Tm) can then be determined by the following boundary
conditions: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tc < ∞,

Tc(rc) = Ts(rc),

Ts(rs) = Tm(rs),

(−κc∂Tc/∂r)rc
= (−κrr∂Ts/∂r)rc

,

(−κrr∂Ts/∂r)rs
= (−κm∂Tm/∂r)rs

,

∇Tm(r → ∞) = ∇T0,

(A5)

where ∇T0 represents the external uniform thermal field gradient.
For the symmetric core-shell structure and boundary conditions, we require only keeping several terms of i = 1 in Eqs. (A3)

and (A4):

T (κθθ/κrr > 0) = A0 + B1rm1 cos θ + D1rm2 cos θ, (A6)

T (κθθ/κrr < 0) = E0 + F1 cos θ sin (n ln r) + H1 cos θ cos (n ln r). (A7)

Therefore, for an isotropic matrix, we can obtain Tm = A0 + B1r cos θ + D1r−1 cos θ . We set D1 as zero to ensure the external
thermal field undistorted. Then we can derive the effective thermal conductivity of the core-shell structure κe as Eqs. (1) and (2).

We next discuss the three-dimensional core-shell structure and put it into an infinite matrix with thermal conductivity κm.
Equation (A1) can be expanded in spherical coordinates as

1

r

∂

∂r

(
r2κrr

∂T

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θκθθ

∂T

r∂θ

)
= 0. (A8)

The general solution of Eq. (A8) is

T (κθθ/κrr � 0) = A0 + B0r−1 +
∞∑

i=1

(Air
s1 + Bir

s2 )Pi(cos θ ), (A9)

T (0 > κθθ/κrr > −1/8) = C0 + D0r−1 +
j∑

i=1

(Cir
s1 + Dir

s2 )Pi(cos θ ) +
∞∑

i= j+1

r−1/2[Ei sin (t ln r) + Fi cos (t ln r)]Pi(cos θ ),

(A10)

T (κθθ/κrr < −1/8) = G0 + H0r−1 +
∞∑

i=1

r−1/2[Gi sin (t ln r) + Hi cos (t ln r)]Pi(cos θ ), (A11)

where s1,2 = [−1 ± √
1 + 4i(i + 1)κθθ/κrr]/2, t = √−1 − 4i(i + 1)κθθ/κrr/2, and j = INT[(−1 + √

1 − κrr/κθθ )/2], where i
is the summation index in Eqs. (A9)–(A11), and INT[· · · ] is the integral function with respect to · · · . Pi is Legendre polynomials.

We find that Eqs. (A9) and (A10) are essentially the same with similar boundary conditions of Eq. (A5), for we require only
keeping several terms of i = 1:

T (κθθ/κrr > −1/8) = A0 + (A1rs1 + B1rs2 ) cos θ, (A12)

T (κθθ/κrr < −1/8) = G0 + r−1/2[G1 sin (t ln r) + H1 cos (t ln r)] cos θ. (A13)

Therefore, κθθ/κrr = −1/8 is the real demarcation point. For isotropic matrix, we can obtain Tm = A0 + (A1r + B1r−2) cos θ .
We set B1 as zero to ensure the external thermal field undistorted. Then we can derive the effective thermal conductivity of the
core-shell structure κe as Eqs. (9) and (10).
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