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Many astronomical studies model stars like radiating blackbodies with unit emissivity. Their conclusions
should be reconsidered if the stellar spectral emissivity, ελ, were to be proven to be appreciably smaller.
However, determining ελ from raw observational data poses serious technical challenges. Here, using a
machine learning technique, we implemented an inverse model for calculating the stellar spectral radiation
flux in a given spectral band emissivity. Radiation flux data in some spectral bands serve as input to
determine the unknown model parameters. To this purpose, we chose 411 stars (361 from the Midcourse
Space Experiment (MSX) catalog and 50 from the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) catalog) as training samples of a stochastic particle swarm optimization algorithm.
The mean values of the emissivity estimates thus obtained deviate significantly from the ideal blackbody
value. Knowledge of the model parameters then enabled us to calculate the radiation fluxes in other spectral
bands to compare with the existing observational data and thus validate our approach. Finally, based on the
trained algorithm, we discuss our predictions for spectral bands where astronomical data are unavailable.
Besides providing direct evidence against modeling stars as emitting blackbodies, our conclusions also call
for more direct investigations of the stellar emissivity.
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I. INTRODUCTION

Determining the star age is key to understanding the
origin of the Universe [1]. The first step to determining it
is to classify the observed star based on its spectral
characteristics, say, whether it is a blue dwarf with an
abnormally strong internal nuclear fusion reaction or a
yellow dwarf with a moderate reaction intensity or,
perhaps, an orange or red dwarf with a low reaction
intensity [2]. Moreover, the spectral analysis of the
radiation from the star can reveal valuable information
about its effective temperature, atmosphere, ionization
state, surface gravity, rotation rate, and the abundance of
elements [3]. In this regard, we remind the reader that
the wide spectral range of the James Webb Space
Telescope, spanning from visible to near-(0.6–5.3 μm)

and midinfrared (5–28 μm) [4–7], was specifically
designed to allow high-precision measurements of star
ages. A related observable essential in the study of stellar
evolution is the radiation flux, which depends on the star
luminosity and its distance from the Earth [8–12]. The
observation of radiation fluxes in different spectral emis-
sion bands [13] provides additional information about
celestial bodies.
One can estimate the radiation flux from a star by using

models for the stellar effective temperature, band emissiv-
ity, and the detection angular parameter [14,15]. Stellar
emissivity is the ratio of the radiation emitted by a star
surface to the radiation emitted by a blackbody at the same
wavelength. Thus, it ranges from 0 to 1 [16–20]. In fact,
stars are not perfect blackbodies, and their emissivity is not
the same across the entire emission spectrum [21–25]. The
radiation fluxes measured by a detector may not conform
to Planck’s law predictions because of the wavelength
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dependence of the stellar emission and/or absorption proc-
esses [26]. Most of such processes takes place in the star
atmosphere, which, in turn, is characterized by variable
patterns of temperature, pressure, density, and element
abundance [27]. Consequently, the relevant radiation flux
cannot be accurately estimated if the star emissivity is
conventionally set to 1 [28,29]. Indeed, the emissivity of a
star should be evaluated together with its effective temper-
ature to mitigate systematic errors in the estimates of the
radiation fluxes [30,31]. On the other hand, determining the
stellar spectral emissivity from raw observational data
proved to be a challenging task, hence the often unwar-
ranted assumption of stars as blackbody emitters.
The stellar effective temperature is a relatively well-

investigated parameter due to its significance in the current
theories of stellar evolution. One can estimate it by having
recourse to different methods, namely, the direct measure-
ment method [32–35], the infrared flux method [36–39],
and the template matching method [40–42].
Contrary to the stellar effective temperature, there is no

well-established method to extract reliable estimates of the
stellar spectral emissivity from the available observational
data. On the other hand, as anticipated above, assuming
ideal emissivity ελ ¼ 1 at all wavelengths may lead to
unwanted inaccuracies in the determination of the radiation
fluxes.
To address this problem, we propose a machine learning

technique to train an inverse model for the radiation flux
of a star of assigned spectral emissivity and effective
temperature, i.e., with atmosphere thick enough for its
surface to be in thermodynamic equilibrium [43]. In a
previous study [44], a similar technique was applied to
investigate the much simpler problem of the total radiation
flux dependence on the effective temperature, alone. We
implement a stochastic particle swarm optimization algo-
rithm to determine the model parameters (spectral emis-
sivity, effective temperatures, and detection angular
parameters) in select spectral bands for a number of
reference stars. The resulting mean emissivity values
are confirmed to deviate significantly from the ideal
blackbody value. After training, the model can be suc-
cessfully employed to predict the radiation fluxes in other
spectral bands and compare them with the existing
observational data when available.

II. METHODS

A. Model of stellar radiation fluxes

Stellar radiation fluxes are usually extracted from the
survey data of astronomical telescopes within specified
spectral bands. The fluxes from a star detected on Earth
may depend on many factors, including its temperature, the
interstellar dust, and the star-detector distance. To simplify
data analysis, we assume, as customary in the literature,
stellar radiation fluxes to be a heuristic function of three

effective stellar parameters only: namely, the band emis-
sivity, the surface temperature, and the detection angular
parameter. Sufficiently accurate knowledge of these three
quantities yields reliable estimates of the relevant stellar
radiation fluxes.
The spectral radiation flux in the wavelength band

(λi, λi þ Δλi) from a blackbody at temperature T is
described by Planck’s law [45]

Ebλi ¼
Z

λiþΔλi

λi

c1λ−5

exp½c2=ðλTÞ� − 1
dλ; ð1Þ

where c1 and c2 are the first and second radiation constants,
respectively. The corresponding band radiation flux from
a star can be expressed as Eλi ¼ ελiEbλi , where ελi is the
relevant star band emissivity. Recalling that the band
radiation intensity is Iλi ¼ Eλi=π and the stellar detection
solid angle is dΩ ¼ πr2=R2 (see Fig. 1), then, the band
radiation flux on the detector can be rewritten as
Epλi ¼ IλidΩ; that is

Epλi ¼ ελiξ

Z
λiþΔλi

λi

c1λ−5

exp½c2=ðλTÞ� − 1
dλ; ð2Þ

where r is the stellar radius, R is the star-detector distance,
and

ξ ¼ r2=R2 ð3Þ

is the detection angular parameter.
In conclusion, Epλi is expressed as a relatively simple

function of three parameters, the band emissivity ελi, the

FIG. 1. The schematic diagram of the detection solid angle dΩ
of a star of emissivity ελ and radius r at a distance R from the
observation point on Earth (not drawn to scale).
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stellar effective temperature T, and the detection angular
parameter ξ, i.e.,

Epλi ¼ fðελi ; T; ξÞ; ð4Þ

which defines the forward problem numerically addressed
in this work.

B. Inverse problem

The difficulty of the problem is that the stellar radiation
fluxes are known for several emission bands, but the model
parameters, including the stellar effective temperature and
band emissivity, are not. The model parameters need then
to be extracted self-consistently from the known radiation
fluxes. For this purpose, we developed a machine learning
algorithm to solve the relevant inverse problem. The
equations to solve can be formulated as

ελi ; T; ξ ¼ F ðEpλiÞ; ð5Þ

where the band index i runs from 1 to 3. We agreed to
solve the inverse problem for the radiation fluxes in three
specific wavelength bands of the Midcourse Space
Experiment (MSX) catalog, namely, 6.8–10.8, 4.24–4.45,
and 13.5–15.9 μm, respectively [46]. In the MSX catalog,
infrared flux densities are reported for six wavelength
bands between 4.22 and 25.1 μm [47]. Estimates of the
right ascension, declination, and proper motion are also
listed in the catalog. The flux densities of radio sources are
defined as the emitted energy per unit frequency interval,
unit area, and unit time interval [48–51]. The flux density
unit adopted in the catalog is Jy [52], which can be
converted to the corresponding SI unit as

1 Jy ¼ 10−26 W=ðm2 · HzÞ: ð6Þ

The radiation fluxes can be calculated by integrating the
average energy density over the band [53], namely,

Eλ1−λ2 ¼
Z

λ2

λ1

Eλdλ; ð7Þ

where Eλ denotes the radiation flux in the relevant wave-
length interval or band.
For the three-band inverse problem, there are five

unknown variables (stellar effective temperature, detection
angular parameter, and three values of band emissivity),
so Eq. (5) admits infinite solutions.
To numerically attack the problem, each emission band

was divided into about 100 intervals. The stellar emissivity
was assumed to be not far from 1.00 because stellar spectra
are known to not differ much from blackbody spectra
[28,29]. Eventually, the most appropriate variability range
for the stellar band emissivity was narrowed down to

(0.90,1.00). The effective temperature and detection angu-
lar parameter were computed for different values
of the star emissivity. The choice corresponding to the
minimum value of an adaptive parameter (the best fitness)
was taken as the optimal final choice.
The deviation ΔTeff of the stellar effective temperatures

reported in the literature Tref
eff from the values Tpresent

eff
estimated in this work is defined as

ΔTeff ¼ Tref
eff − Tpresent

eff : ð8Þ

The radiation fluxes corresponding to different detection
bands are then calculated by using the estimated values
of the band emissivity, stellar effective temperature, and
detection angular parameter. Accordingly, the relative error
δ associated with the calculated radiation fluxes is

δ ¼ ðjEc − Emj=EmÞ × 100%; ð9Þ

where Ec and Em are, respectively, the radiation fluxes
calculated through our technique and those reported in the
telescope observational catalog.

C. Algorithm selection

The stochastic particle swarm optimization (SPSO)
algorithm was designed to solve the inverse problem.
The key idea is that the potential solutions are represented
by particles moving in the solution space with a certain
velocity. The optimal solution is determined by monitoring
an adaptive parameter, the fitness, which quantifies how
close the solution is to an objective value. The search
space of D dimensionality is populated by M particles of
coordinates Xi ¼ ðxi1; xi2;…; xiDÞ, and velocity is popu-
lated by Vi ¼ ðvi1; vi2;…; viDÞ, with i ¼ 1; 2…M. The
best position experienced at a given time t by the ith
particle is denoted by Pi ¼ ðpi1; pi2;…; piDÞ; the absolute
best position among all M particles at the same time
is Pg ¼ ðpg1; pg2;…; pgDÞ.
The velocity Vi of each particle is given in terms of local

and global values [54,55],

Viðtþ 1Þ ¼ wViðtÞ þ c1r1½PiðtÞ − XiðtÞ�
þ c2r2½PgðtÞ − XiðtÞ�: ð10Þ

Here, t is the iteration time, w is the inertia weight, c1 and
c2 are acceleration constants, and r1 and r2 are random
numbers in the interval [0, 1]. Then, the new position Xi of
the particle is determined by

Xiðtþ 1Þ ¼ XiðtÞ þ Viðtþ 1Þ: ð11Þ
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In Fig. 2, we display the flow diagram of our SPSO
algorithm. The steps for inverse computing the stellar
parameters are as follows:
Step 1: Set the initial parameters of the system. The initial

parameters include stellar effective temperatures,
detection angular parameters, and band emissivity
values.

Step 2: Calculate the fitness of each particle. The fitness
value of the ith particle corresponds to its objective
function value defined by

Fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðEipa − EipbÞ=Eipa�2

q
; ð12Þ

where Eipa represents the initial value of the
inverse problem and Eipb is the computational
value of the particle.

Step 3: Compare the fitness Fi of the particle with its
individual best Fibest at that time. If Fi < Fibest, set
this value as the current Fibest, and record the
corresponding particle position.

Step 4: Compare the fitness value of each particle Fi with
the global best Fgbest at that time. If Fi < Fgbest,
set this value as the current Fgbest, and record the
corresponding particle position.

Step 5: Generate the new particle and update the velocity
and position of other particles using Eqs. (10)
and (11). If XjðtÞ ¼ Pj or XjðtÞ ¼ Pg, the position
of the jth particle is generated randomly.

Step 6: Determine whether the end conditions are met. If
the best fitness is less than the preset value or the
iteration number reaches the preset maximum,
then the process is terminated. Otherwise, increase
the iteration index, t ¼ tþ 1, and go back to
Step 2.

In our computations, we set the algorithm parameters as
follows: number of particlesM ¼ 50; maximum number of
iteration t ¼ 10; 000; inertia weigh w ¼ 0.0; acceleration
constants c1 ¼ 1.80 and c2 ¼ 1.80; and space dimensions
equal the number of variables in the problem, D ¼ 3.
The expected solution ranges are 1000–20,000 K for the
effective temperatures, 1.0 × 10−21–1.0 × 10−16 for the
detection angular parameters, and 0.90–1.00 for the band
emissivity values. However, the above ranges have been
expanded to meet the computing requirements, namely,
1.0 × 102.5–1.0 × 104.5 K for the effective temperatures,
1.0 × 10−26–1.0 × 10−10 for the detection angular param-
eter, and 0.90–1.00 for the band emissivity values. These
latter ranges determine the boundaries of the particle
swarm space.

D. Algorithm details

1. Effects of the number of particles on convergence

The number of particles M in the SPSO algorithm has a
direct impact on the inversion efficiency and therefore on the
output accuracy. Thus, one needs to determine an optimal
choice forM. There are two algorithm “end” criteria: (1) the
iteration accuracy is below a fixed level of 10−10, and (2) the
iteration number (or time) is larger than 10,000.
The convergence trends for different M values (10, 20,

50, 70, and 100) were compared to choose the optimal
particle number. The best fitness values characterize the
convergence trends as a function of the iteration time as
shown in Fig. 3(a).
The best fitness decreases with the growth of iteration

time until it hits the minimum value 1.37 × 10−8. For
M ¼ 10, the convergence is the slowest. Convergence is
reached after 1601 iterations for M ¼ 10 and 501 for
M ¼ 20 and 301 for the remaining M values. The con-
vergence trend is the most natural benchmark to choose the
optimal value of M; however, the code running times
should also be considered for practical purposes.
Figure 3(b) shows the algorithm running times for
M ¼ 10, 20, 50, 70, and 100. All the calculations were
performed on a 2.80 GHz Intel Core i7-7700HQ processor.
The running time grows with increasingM, from 62 min for
M ¼ 10 to 636 min for M ¼ 100.
In conclusion, when computing the model parameters,

increasing M significantly increases the computation time
without appreciably lowering the best fitness. Therefore,
taking into account both factors, computation times and
accuracy, we set M ¼ 50 (for which the running time is
331 min).

2. Effects of the band emissivity on convergence

Figure 3(c) shows the best fitness as a function of
iteration time with different band emissivity values, 0.90,
0.93, 0.95, 0.97, and 1.00.

FIG. 2. The flow diagram of our SPSO algorithm.
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All the corresponding best fitness curves decay with the
iteration time and reach their minimum after 301 iterations.
In particular, the best fitness minima are 1.04 × 10−8 and
8.46 × 10−9 for emissivity equal, respectively, to 0.90 and
0.93 and 3.38 × 10−9 for all other emissivity values. In any
case, the minimum value of the best fitness is no larger than
1.00 × 10−8 for an appropriately high number of iterations.
This proves that our algorithm can be used to determine the
inverse problem parameters in the full emissivity range
considered in this work.

3. Effects of band flux uncertainties on convergence

To assess the stability of our inverse problem solution
against the uncertainty of the input data, we generated

random deviations to the catalog band-flux data [56].
The actual, Yexact, and the modified values of the band
flux, Yest, have been related as

Yest ¼ Yexact þ σ · η; ð13Þ

where η is a normally distributed random variable with
mean value 0 and standard deviation 1. For a measured
error γ at 99% confidence, the standard deviation σ of the
measured flux is

σ ¼ ðYexact · γ%Þ=2.576: ð14Þ

The relative error δrel of the estimated flux versus the
exact one is

(a) (b)

(c) (d)

(e)

FIG. 3. (a) Best fitness vs iteration time with different numbers of particles, 10, 20, 50, 70, and 100. (b) Computing time to achieve
convergence vs particle number. Best fitness minimum vs iteration time for (c) different emissivity values, 0.90, 0.93, 0.95, 0.97, and
1.00 and (d) randomized flux with σ [Eq. (14)], 0.01, 0.03, 0.05, 0.07, 0.09, and 0.10. (e) Best fitness minima for different numbers of
input bands.
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δrel ¼
Yest − Yexact

Yexact
: ð15Þ

We then calculated the radiation fluxes of bands 1–6.
Figure 3(d) displays the best fitness as a function of the
iteration time for the deviation σ, 0.01, 0.03, 0.05, 0.07,
0.09, and 0.10.
All best fitness curves decay with the iteration time and

reach their minimum after 201 iterations. The exact values
of best fitness minima are 0.0031, 0.0126, 0.0192, 0.0260,
0.0362, and 0.0414, respectively, for σ ¼ 0.01, 0.03, 0.05,
0.07, 0.09, and 0.10. In any case, the minima of best fitness
are low enough to ensure the stability of our numerical
solutions even in the presence of uncertainties in the input
band-flux data.

4. Effect of the band number on convergence

Figure 3(e) shows the best fitness minima versus the
number of spectral bands used, namely, 0.015, 0.022,
0.025, and 0.242, respectively, for 3, 4, 5, and 6 bands.
The lowest minimum of the best fitness was obtained by
using data from three bands.

III. RESULTS

The spectral detection bands of Earth-based telescopes
are limited. Radiation fluxes in additional bands are
accessible through orbiting detectors, while observational
data are still rather sparse for the remaining bands. Our
inverse method is construed to fill this gap. The model
parameters are inverse optimized based on the known
radiation fluxes in certain accessible bands. After the
key stellar parameters, namely, the effective temperature,
detection angular parameters, and band emissivity, have
been determined, the stellar radiation fluxes in all other
bands can be predicted as solutions of the forward problem.
In the present study, our main source of observational data
was the MSX catalog [46]. The catalog organizes flux data
for 177,860 stars into six detection bands, namely, bands
1–6 with wavelengths 6.8–10.8, 4.22–4.36, 4.24–4.45,
11.1–13.2, 13.5–15.9, and 18.2–25.1 μm, respectively.
Because of its nonlinear nature, the inverse problem can

only be tackled numerically. Considering that the effective
temperatures range between 1000 and 50,000 K, and the
detection angular parameters span several orders of mag-
nitude, a satisfactory solution would elude any standard
numerical methods. For this reason, we had recourse to
the SPSO algorithm, a variation of the popular particle
swarm optimization algorithm, recently developed for
better convergence [54,55].

A. Selection of number of inverse bands

The solution to the inverse problem requires observa-
tional data for an appropriate number of spectral bands.
The relevant variables are the effective temperature, the

detection angular parameter, and the emissivity. Moreover,
the emissivity is a spectral function that yields distinct
values for the different bands. Therefore, the number of
unknowns is larger than the number of equations to solve.
To circumvent this difficulty, we compared results from a
variety of different input combinations, as reported below.
We ran our SPSO algorithm with initial effective temper-

ature of 5000 K, detection angular parameter 2.0 × 10−19,
and emissivity 1.00. Figure 4(a) illustrates the convergence
of the algorithm for different numbers of the bands
available on the MSX catalog. The convergence quantifier
adopted here is the best fitness parameter defined by
Eq. (12). All curves on display quickly converge with
increasing of the number of iterations. More remarkably,
the minimum best fitness value is achieved for three bands.
For this reason, we finally opted to numerically solve the
inverse problem at hand by using the observational data
from three spectral bands.

B. Selection of band combinations

The next question to address is how to select the most
appropriate spectral bands for our analysis. As the MSX
provides data for six bands and we only need three of them,
we can choose from 20 combinations. Results from six
band groups have been compared in detail for best
algorithm performance, namely, group A (band 1, band 2,
and band 3), group B (band 1, band 3, and band 5), group C
(band 1, band 3, and band 6), group D (band 1, band 5, and
band 6), broup E (band 2, band 3, and band 4), and group F
(band 4, band 5, and band 6).
The algorithm was run for each band combination and

different preset flux output errors. Figure 4(b) compares the
solution’s best fitness at increasing output errors for the six
band groups. Group B exhibits the most stable value of the
best fitness. The best fitness of group A is higher than
group B for errors larger than 0.06, and so is the best fitness
of group C but for errors smaller than 0.10. Finally, the best
fitness of groups D, E, and F are all systematically larger
than group B. Thus, group B (band 1, band 3, and band 5)
was selected as our best choice for the SPSO solution of the
inverse radiation flux problem.

C. Comparison of stellar effective temperature

Having tested the performance of our SPSO algorithms,
we calculate now the stellar effective temperatures Tpresent

eff
and compare our results with the corresponding reference
values Tref

eff reported in the literature [57–60].
The upper panel of Fig. 4(c) shows a comparison

between Tpresent
eff and Tref

eff for a sample of 90 stars, each
represented by a blue circle [57–60]. The estimated
effective temperatures span the relatively wide range
3500–6600 K. The representative points are concentrated
around the solid black (diagonal) line, with most of them
lying in the gray shaded area. This means that our relative
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error on the effective temperatures of most stars is less than
15%; that is, the calculated temperatures are consistent with
the existing data.
The deviations ΔTeff between reference, Tref

eff , and
estimated effective temperatures, Tpresent

eff [see Eq. (8)],
are reported in the lower panel in Fig. 4(c). The mean
values and standard deviations of ΔTeff computed over Tref

eff
bins of 200 K are shown as red dots and bars, respectively.
The mean values of jΔTeff j are smaller than 400 K, except
for Tref

eff ¼ 5500 K (500 K) and 4700 K (417 K). The
standard deviations of ΔTeff range between 301 and 912 K,
respectively, at Tref

eff ¼ 6300 and 5500 K. This confirms the
dependability of our numerical results for the stellar
effective temperatures.

D. Determination of stellar band emissivity

The spectral emissivity in bands 1, 3, and 5 can be
obtained by the same token, as illustrated by the correspond-
ing histograms of Figs. 5(a)–5(c). The emissivity of the
sampled stars in the three bands shows distinct qualitative
behaviors: limited to the narrow range 0.95–1.00 in band 1,

centered around 0.90 in band 5, and broadly distributed
between 0.90 and 1.00 in band 3.
The emissivity of the sampled stars in bands 1, 3 and 5

have mean, 0.98, 0.92, and 0.95, and standard deviation,
0.0161, 0.0336, and 0.0212, respectively, as displayed in
Fig. 5(d). As anticipated, the emissivity data of band 3 are
more dispersed. The values of the spectral emissivity
illustrated here, combined with the estimates of the effec-
tive temperatures reported above, allow a self-consistent
calculation of the spectral radiation fluxes from the sampled
stars (listed in the supplemental material, Table S1 [61]).

E. Calculation of stellar radiation fluxes
in other bands with observational data

So far, data on the stellar radiation fluxes in bands 1, 3,
and 5 have been used to train the SPSO algorithm we
implemented to solve the inverse problem and thus com-
pute the unknown model parameters. Having determined
the model parameters with a satisfactory degree of con-
fidence, we can now solve the direct problem of estimating
the radiation fluxes for the same sample of stars, but in
bands 2, 4, and 6, and compare our results with the existing

(a)

(b)

(c)

FIG. 4. (a) Best fitness vs iteration number for the SPSO algorithm operating on a different number of bands, 3, 4, 5, and 6. (b) Best
fitness vs preassigned output error for the six band groups A–F. (c) Computed, Tpresent

eff , vs reported stellar effective temperatures,
Tref
eff [57–60], for 90 stars (blue solid circles). Upper panel: the ðTpresent

eff ; Tref
effÞ pair for each star; the black solid (diagonal) line represents

the identity Tpresent
eff ¼ Tref

eff ; circles falling inside the gray shaded area correspond to relative errors of the effective temperatures lower
than 15%. Lower panel: the deviations ΔTeff are plotted vs Tref

eff ; see Eq. (8). Their mean values and standard deviations in Tref
eff bins of

width 200 K (in the range 3500–6700 K) are indicated respectively by red points and bars. The dashed black (horizontal) line denotes the
reference condition ΔTeff ¼ 0 K.
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observational data. To this purpose, we approximated the
emissivity of band 2 with the emissivity of band 3 and the
emissivity of bands 4 and 6 with that of band 5. Our results
are detailed in the supplemental material, Table S2. The
deviation of our estimates for the radiation fluxes from
those reported in the current literature is quantified by the
relative error, δ, defined in Eq. (9).
To fully exploit the predictive power of our technique,

in Figs. 5(e)–5(j), we compare the relative errors of the
radiation fluxes in all bands 1–6 calculated for a larger
sample of 361 stars from the MSX catalog, respectively,
with emissivity ελ ≤ 1.0 and ελ ¼ 1.0. Here, ελ ¼ 1.0
means that the emissivity was set to be 1 during the
calculation of the radiation fluxes [44], as customary in the
current literature, whereas ελ ≤ 1.0 refers to the use of
the actual emissivity value, as obtained self-consistently
through our inverse model. It is found that the relative
errors of the radiation fluxes with ελ ≤ 1.0 are all smaller
than those for ελ ¼ 1.0, in all six bands. In particular, the
relative errors with ελ ≤ 1.0 are smaller than 1% in bands 1,
2, 3, and 5; smaller than 1.74% in band 4; and quite

scattered in band 6 with a maximum error of 5.27%. It can
be concluded that making use of self-consistent estimates
of ελ ≤ 1.0 is a more effective strategy than assuming stars
as blackbody sources with ελ ¼ 1.0.
The results discussed so far are based on data from the

MSX catalog covering the infrared range 4.22–25.1 μm.
Our conclusions are also corroborated by a preliminary
analysis of data from the Large Sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST) catalog in the
optical range 0.37–0.9 μm [40,41]. We choose a sample
of 50 stars. The emissivity turns out to be 1.00 in the
wavelength range 0.555–0.69 μm (visible light) and 0.90
in the two side ranges, 0.32–0.38 (ultraviolet light) and
0.85–0.97 μm (near-infrared light). See the Appendix for
details.

F. Prediction of stellar radiation fluxes in bands
without observational data

The spectral emissivity calculated above can also be used
to predict the radiation fluxes in spectral bands where

(a)

(e)

(h) (i)

(j)

(f) (g)

(b) (c) (d)

FIG. 5. Emissivity statistics for the sampled stars in (a) band 1, (b) band 3, and (c) band 5 with corresponding mean values and
standard deviations shown in (d). Statistics of relative errors of the radiation fluxes δ, Eq. (9), respectively, with emissivity ελ ≤ 1.0 and
ελ ¼ 1.0 in all six bands of the MSX catalog: (e) band 1, (f) band 2, (g) band 3, (h) band 4, (i) band 5, and (j) band 6.
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observational data are still missing. We did so for the
sample of 361 stars taken from the MSX catalog, as shown
in the supplemental material, Table S3. For 351 stars,
estimates of the effective temperature are reported in the
literature, while for the remaining ten stars, no data are
currently available. On assuming that the emissivity of the
closest known band 3 (4.24–4.45 μm) does not differ much
from the emissivity in the unexplored band 4.0–5.0 μm,
we computed the radiation fluxes reported in Table S3.
Those predictions cannot be compared systematically with
existing observational data. The corresponding sparse data
reported in the MSX, the Bonner Durchmusterung, and the
Henry Draper catalogs are also listed in Table S3 for the
sake of a comparison. In general, our estimates range from
0.90 to 1.00 for the emissivity and from 0.22 × 10−13 to
542.0 × 10−13 W=m2 for the radiation fluxes.
We finally remark that the comparison of the radiation

flux data of Table S3 with future direct flux measurements
will be straightforward, thanks to the accurate estimates
of the corresponding band emissivity provided in the same
table. Of course, this technique can be used to fill
observational data gaps in any available star catalog.

IV. CONCLUSIONS

We have developed an inverse model to extract stellar
band emissivity from astronomical observations. The
“emissivity” mentioned in this article is the “effective
emissivity,” defined as the ratio of the radiation emitted
by the stellar surface to the radiation emitted by a standard
blackbody at the same temperature. The stellar radiation
fluxes in certain spectral bands serve as model input. The
stochastic particle swarm optimization algorithm was
implemented to optimize the model parameters, namely,
spectral emissivity, effective temperature, and detection
angular parameter, of the sampled stars. The close agree-
ment between our predictions and the existing observa-
tional data is advocated to validate our method. Having
optimized our model parameters, we then calculated stellar
radiation fluxes in other spectral bands; the relative devia-
tions from the available data are encouragingly small.
Making use of self-consistent estimates of the stellar
spectral emissivity ελ ≤ 1.0 is a more effective strategy
than assuming stars as blackbody sources with ελ ¼ 1.0.
Finally, as a model application, our method predicts the
radiation fluxes in spectral bands not populated by tele-
scope observation data and for which only qualitative
estimates have been proposed. This work provides an
alternative way to estimate stellar emissivity.
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APPENDIX: STELLAR RADIATION FLUXES
FROM THE LAMOST STELLAR CATALOG

We apply now our technique to data from the catalog of
LAMOST, a telescope located at the Xinglong Observatory
in Hebei, China [62]. This catalog provides a spectroscopic
survey the wavelength range of 0.37–0.9 μm. The five
detected bands, bands 1–5, of the LAMOST catalog are
0.32–0.38, 0.41–0.55, 0.555–0.69, 0.695–0.845, and
0.85–0.97 μm, respectively.
The catalog gives information on the stellar magnitude,

information that must be converted into flux density. The
relationship between the brightness and magnitude of two
celestial bodies is described by Pogson’s equation [63],

m2 −m1 ¼ −2.5 log
E2

E1

; ðA1Þ

where m1 and m2 are the stellar magnitudes and E1 and E2

are the flux densities. The photometric zero point is usually
adopted in applying this formula. The flux density E1 is
the photometric zero point corresponding to the condition
m1 ¼ 0. The stellar flux density E2 can be calculated
according to the given stellar magnitude m2.
Figure 6 shows the relative errors δ of radiation fluxes

with emissivity ελ ≤ 1.0 and ελ ¼ 1.0 for bands 1–5 of the
LAMOST catalog. It is found that the relative errors of
the radiation fluxes with ελ ≤ 1.0 are smaller than with
ελ ¼ 1.0 in band 1 and band 5. In particular, the relative
errors of the radiation fluxes with ελ ≤ 1.0 are less than 8%
and 15% for band 1 and band 5, respectively. The relative
errors of the radiation fluxes are larger than 140% for band
5 with ελ ¼ 1.0, which confirms the inadequacy of the
assumption ελ ¼ 1.0. Even though the relative errors of
the radiation fluxes with ελ ≤ 1.0 are slightly larger than
those with ελ ¼ 1.0 for band 2, band 3, and band 4, our
numerical results are still acceptable. In general, it can be
concluded that the model with ελ ≤ 1.0 is more reliable
than with ελ ¼ 1.0.
The stellar radiation fluxes of 50 stars in band 1, band 3,

and band 5 are calculated explicitly. The fluxes and
emissivity values of the three bands are listed in Table I.
OBSID is the unique number identification of this spectrum
in the LAMOST catalog. The emissivity of band 3 (visible
light) is 1.00. Accordingly, the emissivity values of band 1
(ultraviolet light) and band 5 (near-infrared light) are both
0.90. The temperatures calculated by our model and in the
LAMOST catalog are also shown in Table I. The two sets of
temperatures are seemingly consistent.
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(a) (b)

(c)

(e)

(d)

FIG. 6. Statistics of the relative errors δ of the radiation fluxes with emissivity ελ ≤ 1.0 and ελ ¼ 1.0 in the different bands of the
LAMOST catalog: (a) band 1, (b) band 2, (c) band 3, (d) band 4, and (e) band 5.

TABLE I. Calculation of temperatures and stellar radiation fluxes of 50 stars in band 1 (0.32–0.38 μm), band 3 (0.555–0.69 μm), and
band 5 (0.85–0.97 μm) of the LAMOST catalog. ελ is the emissivity of star at wavelength λ. Ec is the calculated radiation flux (unit:
×10−19 W=m2).

OBSID in the
LAMOST catalog

Band 1 Band 3 Band 5 Temperature
in this work

Temperature in the
LAMOST catalog [62]ελ Ec ελ Ec ελ Ec

1 101001 0.90 1.177 1.00 5.451 0.90 3.493 5167 5068
2 101005 0.90 1.065 1.00 3.358 0.90 1.843 5873 5529
3 101008 0.90 1.924 1.00 7.857 0.90 4.784 5376 5439
4 101009 0.90 1.330 1.00 4.660 0.90 2.668 5658 5702
5 101016 0.90 1.344 1.00 13.970 0.90 12.469 4144 4647
6 101017 0.90 2.461 1.00 8.228 0.90 4.643 5729 5803
7 101020 0.90 5.903 1.00 13.443 0.90 6.481 6641 6110
8 101021 0.90 7.529 1.00 18.223 0.90 9.000 6478 6059

(Table continued)
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