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Supplementary Section 1: Basic properties of thermal chirality 
 

Thermal chirality is reflected in a Hall thermal conductivity tensor 𝜅 with the form of 

 𝜅
𝜅 𝜅
𝜅 𝜅 , [S1] 

with 𝜅 𝜅  and 𝜅 𝜅 . We consider a rotation operation described by the rotation matrix 𝑆, 

 𝑆
cos𝜃 sin𝜃
sin𝜃 cos𝜃 , [S2] 

where 𝜃  is anticlockwise rotation angle. The thermal conductivity tensor 𝜅  after rotation is 

 𝜅
⃡ 𝜅 𝜅

𝜅 𝜅
, [S3] 

where the components take the form of 
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃 , [S4] 
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃 , [S5] 
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃 , [S6] 
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃 . [S7] 
Due to 𝜅 𝜅  and 𝜅 𝜅 , Eqs. (S4)-(S7) can be simplified as 
 𝜅 𝜅 , [S8] 
 𝜅 𝜅 , [S9] 
 𝜅 𝜅 , [S10] 
 𝜅 𝜅 . [S11] 
Any rotation operation does not change a Hall thermal conductivity tensor. 
 

Since there is no real-number solution to 𝜅 𝜅 0, a Hall thermal conductivity tensor 
cannot be diagonalized in the real-number field. For proof, we suppose 𝜆 is the eigenvalue and 
solve the following equation, 
 |𝜅 𝜆𝐼| 0, [S12] 
where 𝐼 is the unit matrix. Equation (S12) can be expanded as 
 𝜆 𝜅 𝜅 𝜆 𝜅 𝜅 𝜅 𝜅 0. [S13] 
We can further derive 

 ∆ 𝜅 𝜅 4𝜅 𝜅 4𝜅 0. [S14] 
∆ 0 indicates no real-number solution to 𝜆. If we solve the equation in the complex-number field, 
we can derive 

 𝜆 𝑖 𝜅 𝜅 . [S15] 

 
We further explore the temperature and heat flux properties of thermal chirality by applying a 

longitudinal temperature gradient. The upper and lower boundaries are periodic, with continuous 
temperatures and heat fluxes. A transverse heat flux (the gray arrows in Fig. S1A) appears due to 
the nonzero off-diagonal components of a Hall thermal conductivity tensor. The periodic boundary 
conditions allow the transverse heat flux to flow out, so the temperature profile is the same as the 
case without thermal chirality, demonstrating a uniform longitudinal temperature gradient (Fig. S1A). 
The temperature and transverse heat flux profiles of an active thermal lattice are also presented in 
Fig. S1B and C. The artificial structure effectively has a Hall thermal conductivity, so thermal 
chirality appears definitely. 
 

In contrast, anisotropy with 𝜅 𝜅  distinctly differs from thermal chirality because a rotation 
operation changes the thermal conductivity tensor; see Eqs. (S4)-(S7). The temperature profile of 
anisotropy is identical to thermal chirality in a longitudinal temperature gradient, but the difference 
appears when using other boundary conditions like point heat sources. The temperature profiles of 
Hall (or anisotropic) thermal conductivities are presented in Fig. S2A-C (or Fig. S2D-F). Since 
thermal chirality breaks the space inversion symmetry, the mirror symmetry of temperature 
distributions is not maintained (Fig. S2G) even at symmetric positions (e.g., the blue dashed lines 



 
 
 

3 
 
 

in Fig. S2A-C). However, anisotropy does not break the space inversion symmetry, so the 
temperature distributions at symmetric positions have mirror symmetry (Fig. S2G). Thus, thermal 
chirality inherently differs from anisotropy regarding rotation invariance and symmetry breaking. 
 
Supplementary Section 2: Description of solid heat transfer 
 

The governing equation of solid heat transfer in a unit cell containing a rotating particle is 

 𝜌𝐶 𝜌𝐶𝑣∇𝑇 𝜅∇ 𝑇 𝑄, [S16] 

where 𝜌 is mass density, 𝐶 is heat capacity, 𝑣 is moving velocity, 𝜅 is thermal conductivity, and 𝑄 
is heat power. For a steady and passive case, Eq. (S16) is reduced to 
 𝑣∇𝑇 𝐷∇ 𝑇 0, [S17] 
where 𝐷 𝜅/ 𝜌𝐶  is thermal diffusivity. We can expand Eq. (S17) in the cylindrical coordinates 

𝑟,𝜃  and derive ∇ �̂� 𝜃  and ∇ , where �̂� and 𝜃  are the unit vectors. 

Equation (S17) can be rewritten as 

 𝛺 𝐷 0, [S18] 

where 𝛺 𝑣/𝑟 is angular velocity. 
 

The temperature profile 𝑇  in the particle has the form of 
 𝑇 𝐹 𝑟 𝐺 𝜃 , [S19] 
where 𝐹 𝑟  and 𝐺 𝜃  are the radial and angular distribution functions. The substitution of Eq. (S19) 
into Eq. (S18) yields 

 𝑟 𝐹 𝑟𝐹 𝐺 𝐺 , [S20] 

where the superscript denotes derivation. 𝐺 𝜃  is periodic regarding 𝜃 and can be expressed as 
𝐺 𝜃 𝑒 . Equation (S20) can be simplified as 

 𝑟 𝐹 𝑟𝐹 𝑖 1 𝐹 0. [S21] 

With a variable change 𝑥 𝛺/𝐷𝑟, Eq. (S21) can be rewritten as 
 𝑥 𝑓 𝑥𝑓 𝑥 𝑖 1 𝑓 0. [S22] 
The general solution to Eq. (S22) is the first-order Kelvin function (1-4), 
 𝑓 𝑥 ber 𝑥 𝑖bei 𝑥 . [S23] 
Then we can derive 

 𝑇 𝑟,𝜃 𝑀 𝑥 𝑟 cos 𝜃 𝜙 𝑥 𝑟 , [S24] 

 
,

𝑀 𝑥 𝑟 cos 𝜃 𝜙 𝑥 𝑟 , [S25] 

where 𝑀 𝑥  is the magnitude of 𝑓 𝑥 , and 𝜙 𝑥  reflects the rotation effect. 
 

We use a stationary particle with an effective thermal conductivity 𝜅∗  to replace the rotating 
particle. The heat conduction equation without rotation becomes 

 𝜅 0. [S26] 

The general solution to Eq. (S26) is 

 𝑇 𝑇 𝐴𝑟 cos𝜃, [S27] 

where 𝑇  is a reference temperature set as zero for brevity, and 𝐴 and 𝐵 are two constants. The 
temperature distributions in the matrix 𝑇  and particle 𝑇∗ are 

 𝑇 𝐴 𝑟 cos𝜃, [S28] 

 𝑇∗ 𝐴∗ 𝑟 cos𝜃, [S29] 
where 𝐵  and 𝐴∗  are two constants determined by the boundary conditions, and 𝐴  is the applied 
temperature gradient. The continuities of temperatures and heat fluxes on the boundary are 
described by 
 𝑇 𝑟 𝑅 𝑇∗ 𝑟 𝑅 , [S30] 



 
 
 

4 
 
 

 𝜅 𝑟 𝑅 𝜅∗
∗

𝑟 𝑅 , [S31] 

where 𝜅  is the thermal conductivity of the matrix, and 𝑅 is the radius of the particle. Substituting 
Eqs. (S28) and (S29) into Eqs. (S30) and (S31), we can derive 
 𝐴∗ ∗ 𝐴 , [S32] 

 𝐵
∗

∗ 𝐴 . [S33] 

 
Generally, 𝑇∗ is different from 𝑇 , but we can find a specific condition to make their difference 

minimum. We define the difference as 

 𝑇 𝑟 𝑅 𝑇∗ 𝑟 𝑅 𝑑𝜃, [S34] 

which can be rewritten as 

 𝑀 𝑥 𝑅 cos 𝜃 𝜙 𝑥 𝑅 ∗ 𝐴 𝑅 cos𝜃 𝑑𝜃. S35  

According to the minimum entropy production principle, 𝜙 𝑥 𝑅 π/4  should be satisfied. 
Equation (S35) takes the minimum value when 

 𝑀 𝑥 𝑅 cos 𝜙 𝑥 𝑅 ∗ 𝐴 𝑅. S36  

 
We reconsider the rotating particle, and the boundary conditions are 

 𝑇 𝑟 𝑅 𝑇 𝑟 𝑅 , S37  

 𝜅 𝑟 𝑅 𝜅 𝑟 𝑅 . S38  
Substituting Eqs. (S24) and (S28) into Eq. (S38), we can derive 

 𝜅 𝐴 cos𝜃 𝜅 𝑀 𝑥 𝑅 cos 𝜃 𝜙 𝑥 𝑅 . S39  

The substitution of Eqs. (S33) and (S36) into Eq. (S39) yields 

 𝜅 𝐴
∗

∗ 𝐴 𝜅 ∗ 𝐴 𝑅 . S40  

Equation (40) can be reduced to 

 𝜅∗ 𝜅 𝜅 √2𝛷, S41  

where 𝛷 𝛺𝑅 𝐷  plays a similar role to the Peclet number. 
 
Supplementary Section 3: Effect of the thermal conductivity of the particles 
 

We know from Eq. (S32) that with the increment of 𝜅∗ , the temperature gradient 𝐴∗  in the 
particle decreases. Meanwhile, faster rotation enhances the effective thermal conductivity of the 
particles; see Eq. (S41). 
 

Since rotation distorts the direction of isotherms in the particle, it also reduces the temperature 
gradient. We perform finite-element simulations based on a unit cell to quantify the effect. The 
temperature profiles with different rotation velocities are presented in Fig. S3A-E. The rotation 
direction affects the distortion direction of isotherms, and a larger rotation velocity leads to more 
sparse isotherms. The average longitudinal temperature gradient 〈 𝑇 〉 in the particle is an even 
function of 𝛷 and is monotonically decreasing in the region 𝛷 0 (Fig. S3F). Since the advantage 
of faster rotation is negated, the optimal rotation velocity exists for maximum thermal chirality. 
 

Then we discuss the quantitative impact of the thermal conductivity of the particles on thermal 
chirality. When 𝜅 0.2 (Fig. S4A), the increment of 𝜅  becomes slow, and the values of 𝜅  with 
different 𝑅 are not identical at 𝛷 0. The maximum value of 𝛾 appears at the identical position of 
𝛷 21.4. We further consider the thermal conductivity of the particles larger than that of the matrix, 
i.e., 𝜅 5 (Fig. S4B). The value of 𝜅  quickly reaches a peak and then decreases, and the curves 
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of 𝜅  does not overlap. The peak of 𝛾 appears at the identical position of 𝛷 4.2, smaller than 
𝛷 21.4 for 𝜅 0.2. Finally, we keep the radius of the particles unchanged. With the increment 
of 𝜅 , the maximum value of 𝛾 and the corresponding value of 𝛷 decrease (the arrow in Fig. S4C). 
For stronger thermal chirality (or larger 𝛾 ), a smaller 𝜅  is better because it leads to a more 
significant temperature gradient in the rotating particles, enhancing the net transverse heat flux. 
 
Supplementary Section 4: Size effect of the active thermal lattice 
 

The size effect means effective thermal conductivity relies on the number of unit cells. We 
discuss three typical cases with 1 𝑁, 𝑁 1, and 𝑁 𝑁 unit cells (Fig. S5A). The effective thermal 
conductivities 𝜅  and 𝜅  are plotted as a function of the size 𝑁 (Fig. S5B). For case I, the values 
of 𝜅  and 𝜅  are irrelevant to the size 𝑁, demonstrating no size effect. In contrast, the values of 
𝜅  and 𝜅  show size dependence in case II, where 𝜅  is decreasing and 𝜅  is increasing. These 
two values finally approach constants because the active lattice becomes large enough. The 
variation ranges are about 1.26% for 𝜅  and 0.54% for 𝜅 , which are relatively small. Since the 
vertical stacking does not matter (case I), case III shows the same size effect as case II (Fig. S5B). 
 

The size effect originates from translation symmetry breaking. The periodic lattice has natural 
structure translation symmetry, but the boundary conditions do not necessarily have translation 
symmetry. We focus on the temperature gradient on the boundary (Fig. S5C). For case I, the 
longitudinal temperature gradients 𝜕 𝑇  at different heights are the same due to the periodic 
boundary conditions at the upper and lower edges, so the translation symmetry of boundary 
conditions is maintained. The transverse stacking does not affect effective thermal conductivity. In 
contrast, for case II, the transverse temperature gradients 𝜕 𝑇 at the left and right boundaries differ 
from elsewhere due to their constant temperatures. The translation symmetry of boundary 
conditions is broken, so the size effect appears in case II. Translation symmetry breaking is crucially 
related to thermal chirality. If the particles do not rotate, thermal chirality disappears, and translation 
symmetry can be maintained. 
 

We further present temperature profiles for intuitive understanding. The reference temperature 
profile with the Hall thermal conductivity is shown in Fig. S5D, demonstrating a uniform longitudinal 
temperature gradient. Figure S5E and F exhibits the temperature profile of an active thermal lattice 
with 𝑁 taking 4 or 20. We also plot the temperature deviation profile 𝛿 𝑇 𝑇 / 𝑇 𝑇  
in Fig. S5G and H. With the increment of 𝑁, the longitudinal temperature gradient becomes more 
uniform. Translation symmetry breaking turns slight, so the size effect gradually vanishes (Fig. S5B). 
 
Supplementary Section 5: Ideal properties of the experimental setup 
 

We perform finite-element simulations based on the fabricated sample under the ideal 
condition without interfacial thermal resistance. The effective thermal conductivity and thermal 
chirality are presented in Fig. S6A. Since we use metals (i.e., copper and steel) with high thermal 
conductivities, the values of 𝜅  and 𝜅  are significantly enhanced, and they reach an unexpected 
order of magnitude 10  W m-1 K-1. Nevertheless, thermal chirality does not strongly depend on 
specific materials. Due to the far smaller thermal conductivity of the particles than the matrix, 
thermal chirality is slightly enhanced and reaches a maximum value of 𝛾 0.35 when 𝑅 0.35. 
 

The temperature profiles with different 𝛷 are presented in Fig. S6B. The upper and lower 
boundaries are thermally insulating, so heat flux is forbidden to flow out at the edges, leading to 
the slant of isotherms. Thermal chirality is intuitively reflected in the slant of isotherms. We also 
perform finite-element simulations based on the effective parameters calculated from periodic 
boundary conditions (Fig. S6C). Despite temperature fluctuations, the slant of isotherms agrees, 
proving the validity of our calculation method. The detailed temperature deviation profiles are 
presented in Fig. S6D. 
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Supplementary Section 6: Basic properties of anisotropic thermal chirality 
 

Since there is no real-number solution to 𝜅 𝜅 0 , an anisotropic Hall thermal 
conductivity tensor is rotation-varying and cannot be diagonalized; see Eqs. (S4)-(S7). For the 
second best, we expect 𝜅  to be quasi-diagonalized, thus leading to two typical cases. The first 
case is 𝜅 𝜅  and 𝜅 𝜅 , corresponding to Fig. 4C in the main text. Solving 𝜅 𝜅 , we 
obtain 
 tan 2𝜃 . S42  

The second case is 𝜅 𝜅  and 𝜅 𝜅 , corresponding to Fig. 4E in the main text. Solving 
𝜅 𝜅 , we derive 

 tan 2𝜃 . S43  

With the rotation angle taking 𝜃  or 𝜃 , a general thermal conductivity tensor can be quasi-
diagonalized. Due to tan 2𝜃 tan 2𝜃 1, we also derive 𝜃 𝜃 π/4, agreeing with the 
results in Fig. 4C and E in the main text. 
 

The anisotropic feature makes thermal chirality depend on direction. We can still characterize 
thermal chirality by the transverse to longitudinal heat flux ratio. According to Eqs. (S4)-(S7), we 
can express thermal chirality 𝛾 as 

 𝛾 . S44  

If we start with a quasi-diagonalized case with 𝜅 𝜅 , anisotropic thermal chirality described by 
Eq. (S44) can be reduced to 

 𝛾 . S45  

When 𝜅 𝜅 , thermal chirality is further simplified as 𝛾 𝜅 /𝜅 , which features rotation 
invariance and demonstrates no anisotropy. 
 

By rotating a specific angle, we can construct an anisotropic Hall thermal conductivity from a 
quasi-diagonalized thermal conductivity. The two types of quasi-diagonalized thermal 
conductivities are designed with practical structures in Fig. 4 in the main text. The thermal 
conductivity of the matrix is diagonalizable with components of 𝜅  and 𝜅 . The effective thermal 
conductivity of the active thermal lattice has the form of Eq. (S1). To obtain these four values from 
finite-element simulations (i.e., 𝜅 , 𝜅 , 𝜅 , and 𝜅 ), we first apply a longitudinal temperature 
gradient by setting the left and right boundaries with constant temperatures. The upper and lower 
boundaries are periodic. Then we obtain 
 𝜅 , S46  

 𝜅 , S47  

where 𝐽  and 𝐽  are the longitudinal and transverse heat fluxes, and 𝐺 is the negative temperature 
gradient. We also use a transverse temperature gradient by setting the upper and lower boundaries 
with constant temperatures, and the left and right boundaries become periodic. Then we derive 

 𝜅 , S48  

 𝜅 . S49  
 

The effective thermal conductivity with different matrices is presented in Fig. S7. With a more 
anisotropic thermal conductivity of the matrix, 𝜅 𝜅  is kept when 𝛼 π/4 (Fig. S7A and C), but 
𝜅 𝜅  is deviated when 𝛼 0. Stronger anisotropy yields a larger deviation (Fig. S7B and D). 
 

The size effect becomes apparent when it comes to anisotropy. The thermal conductivity of 
the matrix is first set as diag 0.5, 2  with the vertical thermal conductivity higher than the horizontal 
one (Fig. S8A). The value of 𝜅  is almost invariant with the increment of 𝑁, but the value of 𝜅  
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decreases. The value of 𝜅  is also invariant with the increment of 𝑁, and the value of 𝜅  increases. 
This phenomenon results from the larger 𝜅  than 𝜅 . When we apply a horizontal thermal field, 
a larger 𝜅  tends to keep the isotherms vertically straight. Hence, the size effect is almost absent 
for 𝜅  and 𝜅 . We also consider the temperature deviation 𝛿 between a practical structure and an 
ideal parameter. The global average temperature deviation 〈|𝛿|〉 is a reliable physical quantity to 
reflect the difference. With the increment of 𝑁, the value of 〈|𝛿|〉 decreases, indicating that the 
practical structure becomes homogeneous. We plot the case of 𝑁 10 in the insets. With the 
enhancement of the anisotropy degree, the size effect becomes more crucial, especially for the 
values of 𝜅  and 𝜅  (Fig. S8B and C). 
 

The size effect is related to the translation symmetry breaking of boundary conditions. On the 
one hand, anisotropy yields significant translation symmetry breaking. On the other hand, as the 
whole system becomes more homogeneous (with a larger 𝑁), translation symmetry breaking turns 
weaker. Thus, effective thermal conductivity finally becomes constant with the increment of 𝑁. 
 
Supplementary Section 7: Linking thermal chirality and transformation thermotics 
 

The transformation theory or transformation thermotics (5-8) still applies to Hall thermal 
conductivity. The transformed thermal conductivity is chiral and anisotropic. That is why we discuss 
the approach to anisotropic thermal chirality. For a coordinate transformation determined by the 
Jacobian matrix 𝐴, the transformed thermal conductivity 𝜅  is 

 𝜅
⃡

. S50  
Since 𝜅 is a Hall thermal conductivity, 𝜅  is generally chiral, anisotropic, and inhomogeneous. 
 

We take Hall thermal cloaking, concentrating, and rotating as three typical examples of the 
calculation process. Coordinate transformations are usually written in cylindrical coordinates. We 
need to express the original isotropic Hall thermal conductivity from the Cartesian coordinates 𝑥,𝑦  
to cylindrical coordinates 𝑟,𝜃 . The expression of the original isotropic Hall thermal conductivity 𝜅 
in the Cartesian coordinates (also denoted as 𝜅  for clarity) is 

 𝜅
𝜅 𝜅
𝜅 𝜅 . S51  

Its expression in the cylindrical coordinates (denoted as 𝜅 ) is 

 𝜅
𝜅 𝜅
𝜅 𝜅 , S52  

where the components can be expressed as 
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃, S53  
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃, S54  
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃, S55  
 𝜅 𝜅 cos 𝜃 𝜅 sin 𝜃 𝜅 𝜅 cos𝜃 sin𝜃. S56  
An isotropic case features 𝜅 𝜅  and 𝜅 𝜅 , so Eqs. (S53)-(S56) become 
 𝜅 𝜅 , S57  
 𝜅 𝜅 , S58  
 𝜅 𝜅 , S59  
 𝜅 𝜅 . S60  
For an isotropic Hall thermal conductivity, its expression in cylindrical coordinates is the same as 
in the Cartesian coordinates. 
 

Then we consider the coordinate transformation for thermal cloaking, 
 𝑟 𝑎𝑟 𝑏 0 𝑟 𝑅 , S61  
 𝜃 𝜃 0 𝑟 𝑅 , S62  
with 𝑎 𝑅 𝑅 /𝑅  and 𝑏 𝑅 . 𝑅  and 𝑅  are the inner and outer radii of the cloak. 𝑟 , 𝜃  are 
the coordinates in physical space, and 𝑟,𝜃  are the coordinates in virtual space. The 



 
 
 

8 
 
 

transformation turns a solid circle into a hollow ring. The corresponding Jacobian transformation 
matrix is 

 𝐴
𝑎 0

0 . S63  

Then the transformed thermal conductivity is 

 𝜅
⃡ 𝜅 𝜅

𝜅 𝜅
. [S64] 

Compared with a familiar thermal cloak, the thermal conductivity of Hall thermal cloaking has two 
nonzero off-diagonal components being opposite constants. 
 

Thermal concentrating first compresses a solid circle with a radius of 𝑅  into a smaller one 
with a radius of 𝑅 . Then the hollow ring with inner and outer radii of 𝑅  and 𝑅  is stretched into a 
bigger one with inner and outer radii of 𝑅  and 𝑅 . The corresponding coordinate transformation is 
 𝑟 𝑐𝑟 0 𝑟 𝑅 , [S65] 
 𝑟 𝑑𝑟 𝑓 𝑅 𝑟 𝑅 , [S66] 
 𝜃 𝜃 0 𝑟 𝑅 , [S67] 
with 𝑐 𝑅 /𝑅 , 𝑑 𝑅 𝑅 / 𝑅 𝑅 , and 𝑓 𝑅 𝑅 𝑅 / 𝑅 𝑅 . The Jacobian 
transformation matrix in the core is 𝐴 𝑐𝐼, with 𝐼 being the second-order unit matrix. The Jacobian 
transformation matrix in the shell is 

 𝐴
𝑑 0

0 . [S68] 

The thermal conductivity of the core is invariant after transformation, and that of the concentrator 
becomes 

 𝜅
𝜅 𝜅

𝜅 𝜅
. [S69] 

 
The coordinate transformation for thermal rotating is 

 𝑟 𝑟 0 𝑟 𝑅 , [S70] 
 𝜃 𝜃 𝜑 0 𝑟 𝑅 , [S71] 

 𝜃 𝜃  𝑅 𝑟 𝑅 , [S72] 

where 𝜑 is the anticlockwise rotation angle. The Jacobian transformation matrix in the core is 𝐴
𝐼 , making the thermal conductivity of the core invariant after transformation. The Jacobian 
transformation matrix in the shell is 

 𝐴
1 0

1 . [S73] 

The corresponding thermal conductivity of the rotator is 

 𝜅
𝜅 𝜅 𝜅

𝜅 𝜅 𝜅 𝜅
. [S74] 

 
The simulation results are shown in Fig. S9. The temperature gradient is uniform when a 

uniform Hall thermal conductivity meets the periodic boundary conditions (Fig. S9A). Then we put 
a particle with opposite thermal chirality in the matrix. The interface effect induced by opposite 
thermal chirality distorts the temperature profile (Fig. S9B), making the object thermally visible. We 
design a conventional thermal cloak to remove the temperature distortion, but it fails (Fig. S9C) 
because a Hall parameter inevitably has the interface effect with a common parameter. The 
temperature distortion is removed (Fig. S9D) when we design a Hall thermal cloak with an 
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anisotropic Hall thermal conductivity described by Eq. (S64). Since the temperature profile in the 
background recovers, the object cannot be thermally detected, achieving the cloaking effect. 
 

Similarly, we demonstrate Hall concentrating (Fig. S9E) and rotating (Fig. S9F) functions, 
indicating that the density and direction of isotherms can be flexibly regulated. The insulating 
boundary conditions further replace the periodic boundary conditions, and the corresponding 
results are still satisfying (Fig. S9G-L). The main difference between the two boundary conditions 
lies in the reference temperature profiles (Fig. S9A and G). 
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Fig. S1. Basic properties of thermal chirality. (A) Temperature profile of a Hall thermal conductivity 
with 𝜅 𝜅 0.4 and 𝜅 𝜅 1.3 W m-1 K-1. (B) Temperature profile of an active lattice 
composed of 20 20 unit cells. (C) Transverse heat flux profile with upward net heat flux. The 
transverse heat flux in the particles is averaged. 
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Fig. S2. Comparison between Hall and anisotropic thermal conductivities whose diagonal 
components are 𝜅 𝜅 1.3  W m-1 K-1. 𝜅 𝜅  for the Hall case and 𝜅 𝜅  for the 
anisotropic case. (A and D) 𝜅 0.4 W m-1 K-1. (C and F) 𝜅 0.4 W m-1 K-1. The left and bottom 
boundaries are insulating. The upper and right boundaries have a constant low temperature. A 
constant high temperature appears at the left-bottom corner. (G) Temperature distributions on the 
dashed lines. 
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Fig. S3. Rotation influences on temperature profiles. (A-E) Temperature profiles with 𝑅 0.35, 
𝜅 /𝜅 1 , and different 𝛷 . The external temperature gradient is 1. The upper and lower 
boundaries are periodic. (F) Average longitudinal temperature gradient 〈 𝑇 〉 in the particle as a 
function of 𝛷 with different 𝑅. 
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Fig. S4. Effect of the thermal conductivity of the particle. (A-C) Effective thermal conductivity of an 
active lattice with 20 20 unit cells as a function of the dimensionless parameter 𝛷 𝛺𝑅 𝐷 . The 
thermal conductivity of the matrix is 𝜅 1, and that of the particles is (A) 𝜅 0.2 and (B) 𝜅 5. 
(C) The radius of the particles is 𝑅 0.35. The unit of thermal conductivity is 1 W m-1 K-1. 
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Fig. S5. Size effect of the active thermal lattice. (A) Three typical cases. (B) Effective thermal 
conductivity as a function of the size 𝑁 with 𝜅 /𝜅 1, 𝑅 0.35, and 𝛷 6.6. (C) Temperature 
gradient distributions with 𝑁 4 . (D) Reference temperature profile 𝑇  of a Hall thermal 
conductivity with 𝜅 0.4 and 𝜅 1.3 W m-1 K-1. (E and F) Temperature profiles 𝑇 of the active 
thermal lattices with 𝑁 4 and 𝑁 20 (scaled to the same size). (G and H) Temperature deviation 
profiles 𝛿 𝑇 𝑇 / 𝑇 𝑇 . 
  



 
 
 

15 
 
 

 
Fig. S6. Simulations of the experimental setup without interfacial thermal resistance. (A) Effective 
thermal conductivity of the fabricated sample with 6 6 unit cells as a function of the dimensionless 
parameter 𝛷 𝛺𝑅 𝐷 . The matrix is copper with thermal conductivity of 400 W m-1 K-1, mass 
density of 8900 kg m-3, and heat capacity of 390 J kg-1 K-1. The particles are steel with thermal 
conductivity of 15 W m-1 K-1, mass density of 7930 kg m-3, and heat capacity of 500 J kg-1 K-1. (B) 
Temperature profiles with the area fraction of the particles being 0.38. From I to IV, 𝛷 takes 100, 
0 , 100 , and 1000 , respectively. (C) Temperature profiles of corresponding ideal Hall thermal 
conductivities shown in (A). (D) Temperature deviation profiles between (B) and (C). 
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Fig. S7. Influences of the matrix with more anisotropic thermal conductivities. (A-D) Effective 
thermal conductivity of an active lattice with 20 20 unit cells as a function of the dimensionless 
parameter 𝛷 𝛺𝑅 𝐷  with 𝜅 1  and 𝑅 0.35 . The anisotropic thermal conductivity of the 
matrix is (A and B) 𝜅 diag 0.2, 5  and (C and D) 𝜅 diag 0.1, 10 . The unit of thermal 
conductivity is 1 W m-1 K-1. 
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Fig. S8. Size effect of the anisotropic thermal lattice. Effective thermal conductivity and average 
temperature deviation 〈|𝛿|〉 as a function of the size 𝑁 with 𝜅 1, 𝑅 0.35, and 𝛷 6.6. (A) 𝜅
diag 0.5, 2 . (B) 𝜅 diag 0.2, 5 . (C) 𝜅 diag 0.1, 10 . The insets in the last rows are the 
temperature and deviation profiles with 𝑁 10 in a transverse temperature gradient. The unit of 
thermal conductivity is 1 W m-1 K-1. 
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Fig. S9. Applications of anisotropic thermal chirality. Three typical functions with (A-F) periodic and 
(G-L) insulating boundary conditions at the upper and lower edges. (A) Reference temperature 
profile with 𝛾 4/13. (B) Interface effect induced by a particle with 𝛾 4/13 (opposite thermal 
chirality compared to the background). (C) Conventional cloak. (D) Hall cloak. (E) Hall concentrator. 
(F) Hall rotator. (G-L) Same as (A-F) with insulating boundary conditions replacing periodic 
boundary conditions at the upper and lower boundaries. 
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