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ABSTRACT

Implementing thermal transparency by using thermal metamaterials, with its potential applications in real-world scenarios, has been a
promising field attracting many theoretical and experimental studies. The implementation of thermal transparency, as well as other thermal
metamaterial-based applications, often requires solving an inverse design problem to calculate optimal design parameters. In this paper, we
propose a periodic interparticle interaction mechanism to realize thermal transparency, in which particles are arranged in periodic lattices with
symmetric interactions and anisotropic thermal conductivities. We reframe the inverse design problem of calculating the design parameters of
such a periodic interparticle system into a reinforcement learning problem. The essence of our reinforcement learning-based approach is to
train an intelligent agent that can vary the design parameters in a series of time steps toward the realization of thermal transparency. Compared
to our previous effort to solve the same problem with an autoencoder-based approach, the reinforcement learning-based approach requires sig-
nificantly less computational resources and thus demonstrates its potential to alleviate the “curse of dimensionality.” We also discuss the cause
for the superior computational efficiency of the reinforcement learning-based approach over the autoencoder-based approach, and the possibil-
ity of extending the use of our reinforcement learning-based approach to solve other inverse design problems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054023

I. INTRODUCTION

Research and development in the field of thermal metamateri-
als has contributed to a number of inventions and new applications
to manipulate heat transfer behaviors in an exotic way, such
as thermal cloaks,1–10 thermal concentrators,3,11,12 thermal
transparency,13–16 and thermal camouflage.17–24 Thermal cloaks
feature zero temperature gradients inside them and unaffected
thermal profiles outside them, so they can protect any internal
object from infrared detection. Thermal concentrators can increase
internal temperature gradients but do not distort external tempera-
ture profiles, so they have broad applications for improving the effi-
ciency of thermoelectric conversion. As for thermal camouflage,
since objects always emit thermal radiation, infrared detection
becomes a powerful tool to get information, especially in dark
regions. In contrast, thermal camouflage aims to mislead infrared
detection. In general, an object has a unique thermal profile. With
an artificially designed device tuning the thermal profile, the object
can become another one in an infrared camera. Therefore, the

actual information cannot be obtained by infrared detection, and
thermal camouflage is achieved. Thermal transparency, which
attracts our particular interest, aims to give an artificially fabricated
composite material or structure effective thermal conductivity
equal to that of the surrounding background. In recent years, the
rapid adoption of infrared cameras in both academia and industry
has made experimental measurements of the effectiveness of
thermal transparency readily available, which also facilitates our
previous work.25

However, the reliance on asymmetric interactions between the
background and the fabricated device is a constraint hindering the
broader adoption of thermal metamaterials to manipulate heat
transfer. Here, the background denotes an area with uniform physi-
cal properties or microstructures, excluding the area occupied by
the device.

To avoid the issue caused by asymmetric interactions, we
carried out a series of works25,26 that utilize symmetric interactions
between periodic particles to realize thermal transparency. First, we
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propose a mechanism of using a periodic interparticle system (PIS)
as the underlying solution to realize thermal transparency.25

The PIS is illustrated in Fig. 1. In a PIS, two equal numbered types
of particles are present. Type A particles have a circular shape and
anisotropic thermal conductivities, while type B particles have an
elliptical shape and isotropic thermal conductivities. The two types
of particles are arranged on a periodic lattice with respect to the
background. The thermal conductivities and relative periodic posi-
tioning of type A and type B particles offer degrees of freedom one
can manipulate to cancel the effect of the presence of these parti-
cles on the heat transfer behavior of the background. Initially, for
the simplicity of mathematical derivation, we confine the two types
of particles on a square lattice.25 Then, we relax this constraint on
the shape of the lattice to a rectangular one.26 We also remove the
constraint that particles must be alternately positioned along both
the horizontal and vertical direction.26 However, with these con-
straints removed, one can no longer find a closed form solution to
the problem. We have to resort to a completely different approach
to determine the design parameters required to realize thermal
transparency. Here, design parameters refer to the parameters
describing the thermal conductivity and positioning of type A and
B particles to form the lattice. Then, realizing that thermal trans-
parency can be converted into solving for the inverse design

problem, finding a set or multiple sets of design parameters so that
the system(s) with this set(s) of design parameters will produce the
desired or designated heat transfer behavior.

To solve for the inverse design problems to accomplish
thermal transparency without these two aforementioned con-
straints, we resort to a machine learning-based approach26 which
has demonstrated its efficacy in tackling inverse design
problems.27–45 The essence of this approach lies in applying
autoencoder-based dimensionality reduction to both the design
space and the response space.45 Once the design space is converted
into the reduced design space, and the response space is converted
into the reduced response space by applying dimensionality reduc-
tion, a feed-forward neural network (NN) can be trained to map
the reduced response space to the reduced design space, which, in
turn, can be restored to the original design space. We show that
our approach can successfully solve for the inverse design problem
of utilizing a PIS to realize thermal transparency.26

However, once we start extending our NN-based approach to
solve more challenging problems, such as thermal camouflage, a
new issue arises. A training set comprised of systems with ran-
domly generated design parameters must be generated for NN
training in our approach, and the random sampling must be dense
enough on the dimension of each design parameter to ensure the

FIG. 1. Periodic composite material and the basic structures. Adapted from Liu et al., J. Appl. Phys. 129, 065101 (2021). Copyright 2021 AIP Publishing LLC.26 (a) An
example of the periodic structures employed in this work, in which particle A (circle) and particle B (ellipse) are in their respective rectangular lattices. (b) The relative posi-
tioning between a pairing particle A and particle B is parameterized by the distance R between their centers and the angular position f relative to the x axis. Particle A
has anisotropic thermal conductivities, which is parameterized in a cylindrical coordinate. Particle B has uniform thermal conductivities, with its shape defined by a
semi-minor axis s and a semi-major axis t. The predefined ranges for these design parameters used in this work are listed in Table I.
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accuracy of NN training. As the number of design parameters
increases when we endeavor to solve more challenging problems,
the size of the training set required scales exponentially with it.
Thus, we begin to face the famous curse of dimensionality.46,47

To deal with the curse of dimensionality, we need to find
another approach in which the size of the training set does not
scale exponentially with the number of design parameters. In this
paper, we propose a novel reinforcement learning (RL)-based
approach to tackle the inverse design problem. We still realize
thermal transparency with the same PIS system and constraints
used in our previous work.26 However, we will show the superiority
of our RL-based approach in terms of computational cost. The
essence of our RL-based approach is training an intelligent agent
that can vary the design parameters in a series of time steps toward
the realization of thermal transparency. Our results show that the
agent can be trained with a reasonable computational cost and is
capable of serving the purpose of solving the inverse design
problem.

II. REINFORCEMENT LEARNING AS AN APPROACH
TO THE INVERSE DESIGN PROBLEM

Reinforcement learning48 has been a prominent field with
many ground-breaking breakthroughs, especially since 2013 when
DeepMind redefined the field by combining reinforcement learning
and deep learning and achieved super-human scores in playing
Atari video games.49,50 Other breakthroughs brought by deep rein-
forcement learning (DRL) includes defeating world champions in
Go games,51,52 controlling robotics,53–55 autonomous driving,56 and
algorithmic trading.57,58 Gradually, the application of RL has also
penetrated into interdisciplinary fields involving applied physics,
such as designing a highly efficient metasurface for holograms.59

Reinforcement learning, along with supervised learning and
unsupervised learning, constitute a major part in the field of
machine learning. However, reinforcement learning represents a
vastly different paradigm to obtain machine intelligence, compared
to that of supervised learning or unsupervised learning. Unlike
supervised learning, in which input and output pairs must be
labeled, usually by a human, a reinforcement learning algorithm
improves the intelligence of an acting agent by interacting with an
environment, aiming to achieve the maximum possible cumulative
rewards as feedbacks from the environment.48 More specifically,
during each time step, the agent obtains an observation of the
(partial) state of the environment and a reward value and makes
the decision to take an action with respect to the environment,
which, in turn, will forward the environment to the next time step
with the next round of observation and reward value. The behavior
of an agent is called a policy, i.e., its way of determining the next
action when facing a certain observation of the (partial) state of the
environment. The purpose of reinforcement learning is to train the
agent with a policy to maximize the cumulative rewards the agent
can achieve during one or many episodes of interacting with the
environment. The form of reward varies with the fields of rein-
forcement learning applications; for example, when applied to algo-
rithmic trading, the reward is obviously monetary. Defining the
form of reward is crucial to a reinforcement learning training,
which will be discussed in more detail later in this paper.

The specific reinforcement learning algorithm we employ in
this work is the Double Deep Q-Network (DDQN),50,60 which is a
variant of the Deep Q-Network (DQN) algorithm.49 DQN belongs
to a more broad category of RL algorithms called Q-learning.61,62

Here, “Q” refers to a function in the algorithm that computes the
maximum expectation value for rewards if an action is taken when
the environment is in a given state. DQN dramatically improves
the power of a Q-learning algorithm by approximating the Q func-
tion by a deep neural network, which makes the Q function usable
when the number of environment state and action is too large to be
stored and computed using traditional Q-learning or, even worse,
when the state space is continuous. DDQN further refines DQN by
using two different Q-networks, one for evaluating Q values and
the other for deciding the next action, which alleviates the training
stability issue by removing a weakness in DQN that the Q-network
for both evaluating Q-values and deciding the next action tends to
overestimate Q-values.

One great invention in the field of Q-learning is the inclusion
of a replay buffer, drawing samples from which a technique called
experience replay can be used, which drastically improves training
stability.63 Before the use of experience replay, using the Q-learning
algorithm in a training process is often problematic and unstable
because, unlike supervised learning where samples in the training
set are usually uncorrelated, the training samples in RL learning are
usually generated by a sequence of interactions with the environ-
ment, leading to high correlations between training samples.63

Correlated training samples also cause the issue that a small change
to Q-values could alter the policy and the data distribution funda-
mentally, which worsens the training stability problem. The experi-
ence replay technique with a replay buffer removes the correlations
from the training samples and makes the changes in the data distri-
bution far less abruptive. Since its introduction, the experience
replay technique has been an integral part of DQN training. More
specifically, a DQN training process begins with filling the replay
buffer with randomly generated training samples and then proceeds
to training the Q-networks and improving the policy of the agent.
In our work, we find another use of the training samples initially
generated to fill the replay buffer, which essentially accelerates the
whole workflow. We will provide more details in Sec. III.

In the remainder of this section, we will describe how to frame
the inverse design problem to obtain design parameters to achieve
thermal transparency as a RL problem. We present a schematic
diagram for our RL approach in Fig. 2. First, we use finite-element
method (FEM) simulations to emulate the physical world.
Basically, we wrap a FEM engine and use it as an environment. In
each time step, a design parameter set is fed to the FEM environ-
ment, and a response vector that represents the heat fluxes on the
baseline is calculated and resulted as an output. The response
vector is also used to compute the reward value, which represents
how far the simulated system is away from achieving perfect
thermal transparency. More precisely, the nearer the simulated
system is to achieving perfect thermal transparency, the higher the
reward. Then, we try to train an agent that can gradually change
one or more design parameters toward the realization of thermal
transparency. The observation the agent obtains is the design
parameter set fed to the FEM environment and the (compressed)
response vector. During each time step, the agent takes the

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 045103 (2021); doi: 10.1063/5.0054023 130, 045103-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


observation and decides which action to take to maximize the
expected reward value. Here, an action is defined as picking one of
the design parameters and either increasing or decreasing its value
by a predefined stride. After the action is taken, an updated design
parameter set is fed into the FEM environment in the next time
step, and a reward value and an updated response vector are
returned. Once the agent is adequately trained, it will serve as a
guide to help search for an optimal design parameter set to achieve
thermal transparency. However, if we consider the design parame-
ter space as a high-dimensional manifold and start the search from
a randomly generated design parameter set, the agent may not be
able to find a viable route to an optimal design parameter set, espe-
cially when there is no optimal design parameter set in its neigh-
borhood. Therefore, with an adequately trained agent, one needs to
perform the guided search in a parallel fashion, with a number of
randomly generated design parameter sets as starting points.

The reason why we choose the same inverse design problem
as we did in our previous work26 with an RL-based approach is
largely due to the difficulty and complexity of RL trainings, com-
pared to a typical supervised learning training process. RL training
is notoriously difficult to perform, which is often plagued by the
correlation in the input data.64 Therefore, it is preferable to apply
our proposed RL-based approach to a known and solved problem
in the field of thermal metamaterial design. It is similar to perform-
ing a “sanity check” for a software system before applying it in real-
world scenarios. Once the algorithms and codes in our RL-based
approach are verified, we are ready to apply it to larger and more
challenging inverse design problems.

III. METHODS

Since we are addressing the same problem25,26 by using a dif-
ferent approach, the same type of lattice and the same ranges for
design parameters are used. The rectangular lattice is illustrated

in Fig. 1. The design parameter dx is fixed to 1 cm. The ellipses
(particle B) are fixed on a horizontally and vertically alternating
rectangular lattice. The spacing between two horizontally adjacent
ellipses is denoted as 2 * dx, and the spacing between two vertically
adjacent ellipses is denoted as 2 * dy. The circles (type A particles)
are also arranged in a rectangular lattice with a displacement with
respect to the lattice occupied by type B particles. Cylindrical coor-
dinates R and f [see Fig. 4(f) of Ref. 26] describe the relative posi-
tioning between pairing circles and ellipses, with the origin located
at the center of the ellipse. More specifically, R denotes the distance
between the centers of pairing circle and ellipse, while f denotes
the angle between the line connecting the centers of pairing circle
and ellipse and the horizontal axis. The circle regions (type A
particles) have anisotropic thermal conductivities [a purple graded
circle with a radius r, Fig. 4(c) of Ref. 26] κ

$
a ¼ diag κρρ, κθθ

� �
. κ
$
a

is represented in the cylindrical coordinates ρ, θð Þ, whose origin is
at the center of a type A particle. The ellipse regions (type B
particles) are defined by uniform thermal conductivities [a red
ellipse with a semi-minor axis s and semi-major axis t, and e ¼ s=t,
Fig. 4(d) of Ref. 26] κb. κm denotes the thermal conductivity of the
background. Finally, the area fraction of type A particles, type B
particles, and the background are denoted by pa ¼πr2= 2dx * dy

� �� �
,

pb ¼πst= 2dx * dy
� �� �

, and pm ¼ 1� pa � pb.
Our entire workflow of solving the inverse design problem to

realize thermal transparency with an RL approach starts with the
design of the environment with which the agent to be trained will con-
tinuously interact. Essentially, the core part of the environment in this
work is a COMSOL Multiphysics65 engine that performs the FEM sim-
ulations of the periodic interparticle systems. As our RL training code
is written in Python, an interface between Python and a COMSOL
Multiphysics engine must be written. However, the COMSOL
Multiphysics software package does not have a Python application pro-
gramming interface (API). Instead, it offers a LiveLink interface to
MATLAB.66 Therefore, we write a MATLAB wrapper around the

FIG. 2. A schematic description of the agent and the environment in this work.
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COMSOL Multiphysics engine that passes on the inputs from our
Python code to the engine, retrieves the outputs from the engine, and
feeds them back to our Python code, as illustrated in Fig. 2.

The essence of designing an environment is determining how
to calculate rewards and return an observation to reflect the state of
the environment. The reward value is measured by how far the
simulated system is away from achieving perfect thermal transpar-
ency. More specifically, as in our previous work,26 heat fluxes are
evaluated on 400 equally distance points on the baseline located at
x ¼ �6 cm relative to the origin, which is located at the center of
the simulation box. The two ends of the 400 equally distance
points have coordinates (�6, �10) cm and (�6, 10) cm relative to
the origin, respectively. If perfect thermal transparency were
achieved, one would expect the same value of heat fluxes on all 400
points on the baseline as that in the background, as if no periodic
interparticle system exists. For example, if the same thermal trans-
parency with heat fluxes JS � 82Wm�2 were achieved, one would
observe JS � 82Wm�2 on all 400 points on the baseline. To
measure the deviation from a perfect thermal transparency, we
measure the heat flux values on all 400 points on the baseline and
calculate the mean squared error (MSE) between the measured heat
fluxes on the 400 points on the baseline and the value indicating a

perfect thermal transparency,

MSE ¼ 1
n

Xn
i¼1

(fi � fref )
2: (1)

Here, n denotes the number of points selected on the baseline for
the measurement of heat fluxes, fi denotes the measured heat flux
value on a specific point, and fref denotes the desired heat flux
value in a perfect thermal transparency case.

Then, we define the unadjusted reward to be the negative of
the MSE between the measured heat fluxes on the 400 points on
the baseline and the value indicating a perfect thermal transpar-
ency. We also call the measured heat fluxes on the 400 points on
the baseline response vector. However, this unadjusted reward
could have a very wide range of magnitude, which is unfavorable
for neural network (i.e., the Q-network) training. Then, we define
the adjusted logarithmic reward r to be

r ¼ 9� log10 MSE if MSE � 109

0 otherwise:

�
(2)

FIG. 3. Schematic diagrams of the NN architectures. (a) An autoencoder to map the response vector to the reduced response vector by performing dimensionality
reduction. (b) The encoder part of (a). (c) An NN to map the design parameters to the reduced design parameters by performing dimensionality reduction.
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In this definition, the nearer the simulated system is to achieving
perfect thermal transparency, the higher the reward.

To enable the agent to know the full state of the environment,
both the input (i.e., design parameter set) and output (i.e., the

response vector) are concatenated to form the observation vector.
However, a direct use of the 400 dimensional response vector
would make the dimensionality of the observation vector too large,
which would impair the Q-network training and introduce a large
amount of redundant information (note that the observation vector
feeds into the input layer of the Q-network). To alleviate this issue,
we take the liberty of reusing a part from our previous works:26

using an autoencoder67 to compress the response vector into a
reduced response vector. We use a 400–50–10–50–400 architecture
for the autoencoder, which is illustrated in Fig. 3(a). Note that only
the architecture of the autoencoder has been reused, not the model
for the autoencoder itself. The autoencoder presented in this work
is trained with the training samples in the replay buffer, which will
be discussed extensively later in this paper. Our previous results
demonstrate that the 10-dimensional reduced response vector can
conserve the vast majority of information for the 400-dimensional
response vector. Therefore, the 9-dimensional design parameters

TABLE I. Ranges of the design parameters, in which the design parameter sets for
the initial filling of the replay buffer are randomly generated. The range for R is
selected to avoid overlapping between type A and type B particles.

Design
parameter Range Design parameter Range

dy (0.8, 1.2) cm e (0.05, 0.2)
R (0.67, 1.36) cm κρρ (0, 1)Wm−1 K−1

f � π
4 ,

π
4

� �
κθθ (0, 1)Wm−1 K−1

pa (0.05, 0.4) κb (0, 1)Wm−1 K−1

pb (0.05, 0.4) κm (0, 1)Wm−1 K−1

FIG. 4. The workflow of RL training. Left: The workflow is divided into three phases. Right: The corresponding status of the replay buffer.
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and 10-dimensional reduced response vector are concatenated to
form the 19-dimensional observation vector.

During the first time step of each episode, the input to the
environment (i.e., design parameter set) is randomly generated
within the predefined range shown in Table I. Then, the response
vector is calculated, and the observation vector is formed.
The agent decides which action to take or evaluates a probability
distribution of actions to be taken (for a ϵ-greedy exploration–
exploitation strategy). The action will trigger the transition of the
environment to the next time step. We define the action space for
the agent as a two-dimensional one. In the first dimension of the
action space, the agent decides which design parameter to vary. In
the second dimension, the agent decides whether to increase or
decrease the design parameter by a predefined stride. We select the
predefined stride for each design parameter to be 1/10 of its respec-
tive range, as listed in Table I. The agent may take an action that
could make the design parameter out of the range. In this case, the
episode is terminated, and a new episode is initiated. To ensure
that an episode does not last forever, we define a hyperparameter
called the maximum per episode steps, which is set to 10 000 for
the RL training. Once the step count exceeds this limit, the episode
is terminated, even when the design parameters are still in the valid

range. However, in real training, this limit is never reached.
Another situation is that the agent finds the optimal design param-
eter set to achieve thermal transparency. In this case, the episode is
also terminated.

The workflow of our RL training can be summarized into two
phases, as depicted in Fig. 4. During the first phase, training samples
are initially generated with randomly selected design parameter sets
and the corresponding response vector and rewards obtained by
FEM simulations to fill the replay buffer. A training sample consists
of five parts: the observation of the environment’s state, the action
the agent decides to take, the reward from taking the said action, the
types of the current time step, and the next time step (whether the
time step is the initial step, a running step, or the terminating step of
an episode). Once the replay buffer is filled with a certain number of
training samples, the first phase is completed and the response
vectors corresponding to the training samples are used to train the
autoencoder, which performs dimensionality reduction for the
response space. During the second phase, the RL algorithm contin-
ues to explore the environment by using a collect policy to feed
actions to the environment and obtain observations as new training
samples. These new training samples are placed into the replay
buffer, and the old training samples are evicted while the RL

FIG. 5. An episode that ends with the terminating step finding a design parameter set that achieves thermal transparency at the baseline located at x ¼ �6 cm with heat
fluxes JS � 82Wm�2. The episode consists of an initial step and five subsequent steps. (a) The MSE between the response vector in each step and the response vector
in the perfect thermal transparency case. Inset: The corresponding reward value in each step calculated using Eq. (2). (b) The response vector for each step converging
near the perfect response vector. The FEM simulation of the configuration in the initial step is presented in Figs. 6(a) and 6(b), and the FEM simulation of the configuration
in the fifth step is presented in Figs. 6(c) and 6(d).

TABLE II. The design parameters of two systems (A and B) to achieve thermal transparency at the baseline located at x =−6 cm with heat fluxes JS≈ 82 Wm−2. System A
corresponds to Figs. 6(a) and 6(b), and system B corresponds to Figs. 6(c) and 6(d). dy and R are in cm; κρρ, κθθ, κb, and κm are in Wm−1 K−1; and the other design
parameters are unitless.

Design parameter dy R f pa pb e κρρ κθθ κb κm

A 0.849 0.957 −0.209 0.0603 0.0647 1.60 0.960 0.656 0.0523 0.410
B 0.849 0.957 −0.209 0.0603 0.0647 1.60 0.660 0.656 0.252 0.410
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FIG. 6. Finite-element simulations of thermal transparency with heat fluxes JS � 82Wm�2. The size of the simulation box is 20� 20 cm2, and the periodic composite
material is around 10� 10 cm2. The baseline for measuring heat fluxes is located at x ¼ �6 cm (not shown on the figures), and the origin is located at the center of the
simulation box. White lines represent isotherms. (a) The design parameter corresponds to the initial step in the episode shown in Fig. 5. The calculated MSE [defined in
Eq. (1)] is 384.56. (b) The zoom-in of the left-bottom corner of the periodic composite material box in (a). (c) The design parameter corresponds to the terminating step in
the episode shown in Fig. 5. The calculated MSE [defined in Eq. (1)] is 0.90. (d) The zoom-in of the left-bottom corner of the periodic composite material box in (c). The
temperature isotherms in (c) and (d) demonstrate that in the vicinity of the periodic composite material box, the temperature distribution is far less disturbed by the pres-
ence of the periodic composite material box, compared to those in (a) and (b), which signifies the match between the effective thermal conductivity achieved by our pro-
posed mechanism and the thermal conductivity of the background. The design parameter values are shown in Table II.
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algorithm samples a batch from the replay buffer and trains the
Q-networks.

Inspired by our previous work,26 we realize that this typical
RL training workflow can be tremendously accelerated by inserting
a pre-training phase between the two aforementioned phases.
In this pre-training phase, the training examples in the replay
buffer are used again to train a feed-forward neural network that
takes design parameters as input and predicts the (reduced)
response vector. The architecture of this feed-forward neural
network is illustrated in Fig. 3(c). We then use the trained NN to
act as a pseudo-environment with which the agent interacts. The
key improvement comes from making an NN inference to obtain
the reduced response vector that is several orders faster than
taking a FEM-based evaluation. Although one would expect some
errors in an inferred response vector deviating from the ground-
truth response vector calculated by a FEM simulation, the inferred
response vector is accurate enough to let the agent know the approxi-
mate landscape of the response space and train the Q-networks
accordingly to adapt to it. We call this phase the NN-accelerated pre-
training phase of the RL training.

Once the agent is adequately trained in the NN-accelerated
pre-training phase, which is signified by the diminishing yet

stabilizing training loss for the Q-networks, we switch the environ-
ment and let the agent interact with the real FEM-based environ-
ment, which further improves the policy of the agent. We call this
phase the FEM-based fine-tuning phase. In this phase, we start to
search for the optimal design parameter set to achieve thermal
transparency. We define the criterion for finding the optimal
design parameter set to be having an MSE less than 1 from the
perfect response vector. To give an idea how stringent this criterion
is, a randomly generated design parameter set usually corresponds
to a MSE on the order 103.

There is one subtle problem regarding the size for the replay
buffer for different phases. During the first phase when the replay
buffer is being filled with FEM-based training samples, we limit the
size of the replay buffer to 1000. The same 1000 training samples
are used to train the feed-forward NN in the second phase, the
NN-accelerated pre-training phase. Furthermore, these 1000 train-
ing samples are used a third time to train the autoencoder for
dimensionality reduction of the response space. Then, we use
the DDQN algorithm to train the agent interacting with the
pseudo-environment while the replay buffer continues to be filled
with training examples generated by the interactions between the
agent and the pseudo-environment as we lift the limit of the size

FIG. 7. Another episode that ends with the terminating step finding a design parameter set that achieves thermal transparency at the baseline located at x ¼ �6 cm with
heat fluxes JS � 82Wm�2. The episode consists of an initial step and 15 subsequent steps. (a) The MSE between the response vector in each step and the response
vector in the perfect thermal transparency case. Inset: The corresponding reward value in each step calculated using Eq. (2). (b) The response vector for the initial, 3rd,
6th, 9th, 12th, and 15th steps converging to the near perfect response vector. The FEM simulation of the configuration in the initial step is presented in Figs. 8(a) and 8(b),
and the FEM simulation of the configuration in the 15th step is presented in Figs. 8(c) and 8(d).

TABLE III. The design parameters of two systems (C and D) to achieve thermal transparency at the baseline located at x =−6 cm with heat fluxes JS≈ 82 Wm−2. System C
corresponds to Figs. 8(a) and 8(b), and system D corresponds to Figs. 8(c) and 8(d). dy and R are in cm; κρρ, κθθ, κb, and κm are in Wm−1 K−1; and the other design
parameters are unitless.

Design parameter dy R f pa pb e κρρ κθθ κb κm

C 1.02 1.06 −0.0378 0.285 0.0540 1.78 0.721 0.735 0.344 0.410
D 0.90 1.06 −0.352 0.0747 0.0540 1.78 0.621 0.535 0.244 0.410
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FIG. 8. Finite-element simulations of thermal transparency with heat fluxes JS � 82Wm�2. The size of the simulation box is 20� 20 cm2, and the periodic composite
material is around 10� 10 cm2. The baseline for measuring heat fluxes is located at x ¼ �6 cm (not shown on the figures), and the origin is located at the center of the
simulation box. White lines represent isotherms. (a) The design parameter corresponds to the initial step in the episode shown in Fig. 7. The calculated MSE [defined in
Eq. (1)] is 5903.62. (b) The zoom-in of the left-bottom corner of the periodic composite material box in (a). (c) The design parameter corresponds to the terminating step
in the episode shown in Fig. 7. The calculated MSE [defined in Eq. (1)] is 0.99. (d) The zoom-in of the left-bottom corner of the periodic composite material box in (c).
The temperature isotherms in (c) and (d) demonstrate that in the vicinity of the periodic composite material box, the temperature distribution is far less disturbed by the
presence of the periodic composite material box, compared to those in (a) and (b), which signifies the match between the effective thermal conductivity achieved by our
proposed mechanism and the thermal conductivity of the background. The design parameter values are shown in Table III.
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of the replay buffer to 100 000. When we proceed to the last phase
of FEM-based fine-tuning, we assemble a replay buffer with an
initial size of 2000, half of which are training samples from the
first phase and the other half are from interactions between the
agent and the pseudo-environment during the second phase.
Thus, we keep all the FEM-based training samples and downsam-
ple the training samples generated by the interactions between the
agent and the pseudo-environment from �100 000 to 1000. As
the RL training in the FEM-based fine-tuning continues, the replay
buffer is being filled with more FEM-based training samples.

The rationale behind varying the replay buffer size is simply to
balance the accuracy and speed. During the first phase when the
FEM-based training samples are costly to generate, we have to limit
the replay buffer to a relatively small size. During the NN-accelerated
pre-training phase when generating training samples by NN

inference is several orders cheaper, we assign a much larger limit to
the size of the replay buffer to allow the agent to be trained on a
much larger yet less accurate training set. During the last phase of
FEM-based fine-tuning, although new FEM-based training samples
are trickling into the replay buffer, we still have to downsample the
training samples generated by the interactions between the agent and
the pseudo-environment. Otherwise, the replay buffer would be
dominated by the less accurate training samples generated by NN
inference, which gives the agent a scarce chance to be exposed to the
accurate FEM-based environment.

We employ the commercial software packages COMSOL
Multiphysics65 for FEM simulations and MATLAB66 as the interface
between the COMSOL engine and the Python environment for
running the RL training. The environment which wraps around the
COMSOL engine is written in a mixture of Python/MATLAB/Java.

FIG. 9. (a) The histogram of the length of all episodes the agent experienced in the FEM-based RL fine-tuning phase. (b) The histogram of the MSE between the
response vector and the perfect thermal transparency case in the first five steps of all episodes the agent experienced in the FEM-based RL fine-tuning phase. (c) The his-
togram of the MSE between the response vector and the perfect thermal transparency case in the last five steps of all episodes the agent experienced in the FEM-based
RL fine-tuning phase.
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The RL training is performed with the framework of TensorFlow
2.168 and TF-Agents 0.4.0.69 We also employ Pandas70 for data anal-
ysis. The FEM simulations and RL training were primarily done on a
dual-socket 24 physical core Xeon Haswell-EP server.

The architecture of the Q-networks is a simple feed-forward
NN (19–100–50–50–18). The dimension of the input layer for the
Q-networks comes from the fact that the observation vector is
19-dimensional. The dimension of the output layer for the
Q-networks arises from the 18 possible actions to take (9 design
parameters to vary and either increase or decrease by a predefined
stride). We employ the RMSProp optimizer with a learning rate of
2:5� 10�4, a discount factor of 0.95 for the history/coming gradi-
ent, and zero momentum. We set the target Q-network update
frequency to 2000, following the classical papers by DeepMind.50

We use Huber loss71 to evaluate temporal difference (TD) errors.
We use 0.99 as the discount factor for future rewards. We also
employ a ϵ-greedy strategy to balance exploration and exploitation,
where ϵ has a decaying value from 1.0 to 0.01 over 250 000 steps.

IV. RESULTS

In the FEM-based RL fine-tuning phase, we record all the epi-
sodes that the agent experienced. To obtain a comparison with our
previous work, we still aim to achieve thermal transparency at the
baseline located at x ¼ �6 cm with heat fluxes JS � 82Wm�2. Out
of the 95 episodes we recorded, 9 episodes ended with a terminat-
ing step in which a design parameter set that could achieve thermal
transparency was found. The other episodes ended with a terminat-
ing step in which the design parameter set had at least one parame-
ter out of the range defined in Table I.

Here, we present two exemplary episodes that achieve our
final objective of realizing thermal transparency. The first episode
consists of six steps. Figure 5 demonstrates the MSE between the
response vector and the ideal case response vector (flat values of
JS ¼ 82Wm�2) for each step. The reward value, which is the nega-
tive of the logarithmic MSE plus a constant, is also presented in the
inset. The shape of the response vectors are also shown in Fig. 5(b).
We perform FEM simulations with the design parameter sets in the
initial step and the terminating step, respectively, with the values
for the design parameters shown in Table II and the temperature
distribution and isotherms shown in Fig. 6. The agent only changes
the values for κρρ and κb.

The second episode consists of 16 steps. Figure 7 demonstrates
the MSE between the response vector and the ideal case response
vector (flat values of JS ¼ 82Wm�2 ) for each step. The reward
value, which is the negative of the logarithmic MSE plus a constant,
is also presented in the inset. The shape of the response vectors are
also shown in Fig. 7(b). We perform FEM simulations with the
design parameter sets in the initial step and the terminating step,
respectively, with the values for the design parameters shown in
Table III and the temperature distribution and isotherms shown in
Fig. 8. In this episode, the agent varies more design parameters,
including dy, f, pa κρρ, κθθ , and κb.

Figure 9(a) shows a histogram for the lengths of all 95 epi-
sodes. The vast majority of episodes have a length shorter than 100
steps. In Fig. 9(b), we collect the first five steps from all episodes
and plot a histogram of the MSE between the corresponding

response vector and the ideal case response vector (flat values of
JS ¼ 82Wm�2). In Fig. 9(c), we plot a similar histogram, but for
the last five steps of all episodes. Comparing Figs. 9(b) and 9(c)
indicates that the trained agent has the capability of varying the
design parameters toward achieving thermal transparency with stat-
istical significance.

V. DISCUSSION AND CONCLUSION

Thermal transparency has potential applications for reducing
thermal stress concentration. In general, a non-uniform thermal
field may damage devices due to thermal stress concentration. The
proposed scheme can remove the distortion of thermal profiles and
reduce the thermal stress concentration, so it can thermally protect
devices, i.e., thermal protection. Moreover, thermal transparency
also provides insights into thermal camouflage because it is a
special kind of thermal camouflage to some extent.

There are two basic methods to realize anisotropic thermal con-
ductivities in experiments. One method is based on natural materials
such as fiber materials and porous materials that commonly have
anisotropic thermal conductivities themselves.72 The other method is
to design microstructures in the materials with isotropic thermal
conductivities. Common microstructures include layered structures,
whose anisotropic thermal conductivities are a result of the different
capabilities of heat transfer along the directions of series and parallel
connections.73 To realize the designed parameters, layered structures
are good candidates. Since the effect of thermal transparency is
mainly determined by the relative sizes of particles and matrices, we
can scale up the whole system to make it easy to fabricate the
required microstructures. A more convenient scheme lies in the 3D
printing skill. As long as the microstructures are well designed, the
samples can be fabricated with the anisotropic thermal conductivities
induced by the microstructures.74

In this work, we demonstrate a RL-based approach for solving
the inverse design problem of deciding the design parameter set for
realizing thermal transparency with a periodic interparticle system.
The DDQN algorithm we employ can train an intelligent agent
that is able to vary the design parameters toward the realization of
thermal transparency. In our approach, we carefully design the
reward function, the composition of observations of the environ-
ment for the RL training. We implement the environment to
mimic the physical world by using a COMSOL-based FEM engine
and a MATLAB/Python wrapper. We devise an efficient scheme of
making most use of training samples in the replay buffer and
achieve balance between accuracy and speed. To the best of our
knowledge, the use of an NN-based pseudo-environment to pre-
train the RL agent to accelerate the whole workflow has not been
attempted by others previously. In the FEM-based RL fine-tuning
phase, we find several episodes with terminating steps in which the
design parameter set for realizing thermal transparency is found. It
demonstrates the full power of our trained RL agent.

One advantage of our RL-based approach over our previous
autoencoder-based approach is that the new approach requires a sig-
nificantly fewer computational resource. Most of the computational
cost arises from the first phase of the RL training (i.e., filling the
replay buffer with 1000 FEM training samples) and the last phase of
the RL training, FEM-based RL fine-tuning, where several thousand
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FEM simulations are performed. This is in sharp contrast to our pre-
vious work26 where 50 000 FEM simulations were performed.

In theory, with adequate computational resources, the
NN-accelerated RL pre-training phase could be “ablated,” and the
RL training could still converge. However, according to our experi-
ence with a number of trial and error iterations to obtain conver-
gence in the RL training, the NN-accelerated RL pre-training phase
is an integral part of the whole RL training process. Constrained by
our computational resources, we simply could not afford to fill the
replay buffer only with the accurate yet very expensive FEM-based
training samples. Without the NN-accelerated RL pre-training
phase, only FEM-based training samples can go into the replay
buffer, which takes too long to make the size of the replay buffer
sufficiently large to train the RL agent using a DDQN algorithm.

Furthermore, our RL-based approach can be readily extended
to solve inverse design problems with constraints, which cannot be
easily addressed by our previous autoencoder-based approach. For
example, thermal metamaterials with certain ranges of thermal con-
ductivities could be costly to fabricate, and it would be preferable to
find a set or multiple sets of design parameters that avoid the said
ranges of thermal conductivities. In our RL-based approach, one can
manipulate the reward function to tell the agent to avoid a certain
range for a specific design parameter while the agent is searching the
design space, to satisfy the predefined constraints. Considering that
one often encounter inverse design problems with constraints in real-
world applications, our RL-based approach could broaden the appli-
cations of thermal metamaterials significantly.

RL, compared to supervised learning and unsupervised learn-
ing, is an intrinsically different paradigm for acquiring machine
intelligence. The superior efficiency of our RL-based approach,
compared to our previous supervised learning-based approach, is
difficult to explain using technical details, as one could not draw a
direct apple-to-apple comparison between two different paradigms.
However, a high-level comparison between the two approaches is
possible. A very recent article by Silver et al.,75 “Reward is enough,”
defines the essence of intelligence as “the computational part of the
ability to achieve goals in the world,” and declares that RL, as a for-
malization of the problem of goal-seeking intelligence, as the ulti-
mate way to achieve artificial general intelligence (AGI). They
introduce a hypothesis for achieving AGI: Reward-is-Enough.
Under this hypothesis, once a reward is adequately defined, and
algorithms that can train an agent acting in its environment to
maximize the reward is implemented, any kind of human level or
even super-human level machine intelligence can be achieved. This
hypothesis, from a high-level perspective, explains the efficacy of an
RL-based approach compared to a traditional supervised learning-
based approach. In simple words, an RL-based approach is more
akin to the nature of human intelligence, while a traditional super-
vised learning-based approach is more mechanistic. In summary,
an RL-based approach, though relatively challenging to implement,
could offer intrinsic benefits in terms of computational efficiency,
as it captures the very nature of intelligence.

A known limitation of our RL-based approach is that the initi-
ation scheme for generating the first time step of each episode may
have a large room to improve. Currently, the design parameter set
is randomly generated for the first time step of each episode.
However, most episodes end up with not finding an optimal design

parameter set. As the RL training in the final fine-tuning goes, the
agent knows more and more about the landscape of the response
space. Therefore, in theory, a more clever initiation scheme could
be designed to make more efficient use of the information the
agent knows, to make a more educated guess of the initial design
parameter set for an episode. This new initiation scheme could tre-
mendously reduce the number of fruitless episodes that can be
known a priori to have a high probability to get stuck in a region
where finding an optimal design parameter is highly unlikely.

Our RL-based approach is extensible to other inverse design
problems in the field of thermal metamaterials, such as deciding
the design parameter set for thermal cloaks. Furthermore, our
RL-based approach shows the great potential of RL, as a framework
to acquire machine intelligence, to solve a broad spectrum of
inverse design problems that could be found in fields far beyond
metamaterial designs.
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