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ABSTRACT

The periodic interparticle interaction mechanism has been previously proposed for heat management, especially the practical application of
thermal transparency. In our mechanism for engineering and manipulating thermal metamaterials, particles are arranged in periodic lattices
with symmetric interactions. In this work, we relax the constraints in the previous work and allow rectangle lattice and arbitrary relative
positioning between the two types of particles. We use a machine learning-based approach to solve the inverse design problem by training
autoencoders to compress the dimensionalities of both the design space and the response space and training a neural network tailored for
the inverse design problem. We employ the finite-element method for generating the training set for the neural network and for validating
the calculated design parameters for a given thermal transparency problem. We also discuss the possibility of extending the machine
learning-based workflow to other problems, such as thermal camouflage.
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I. INTRODUCTION

Thermal metamaterial has been an emerging field with a
number of intriguing applications,1–3 such as thermal transparency,4–7

thermal cloaks,1,2,8–15 thermal concentrators,8,16,17 and thermal
camouflage18–25 since 2008. Usually, these functionalities of
thermal metamaterial are realized in the framework of asymmetric
interactions between the background and the device.4–7 The back-
ground is typically defined as the region with uniform physical char-
acteristics or microstructures, excluding the region occupied by the
device. Thermal transparency, by its definition, is achieving the effec-
tive thermal conductivity of the composite material or structure
equal to the thermal conductivity of the surrounding background.
The effectiveness of thermal transparency can be measured experi-
mentally by using an infrared camera to take images of temperature
distribution, as we did in our previous work.26 Thermal transparency
was previously realized by utilizing asymmetric interactions between
the shell and the core. Another similar functionality, thermal invisi-
bility, which also features the same thermal conductivities between
the background and the device, employs asymmetric interactions
between the matrix and inside particles. The region outside the shell

and the region outside the matrix are considered the background in
thermal transparency and thermal invisibility, respectively.

Although technically feasible, asymmetric interactions may
hinder the application of thermal metamaterials, such as thermal
invisibility, due to the noncommutability of matrices and inside
particles required by asymmetric interactions.26

In our previous work,26 we proposed a mechanism that employs
symmetric interactions between periodic particles to realize thermal
transparency. A periodic interparticle system (PIS) consists of an
equal number of circular and elliptical regions with anisotropic and
uniform thermal conductivity, respectively. Our mechanism avoids
the aforementioned issue caused by asymmetric interactions. A brief
summary of the mechanism is presented [Figs. 4(a)–4(d)]. Two types
of particles (i.e., particle A and particle B) are embedded in a
periodic manner in the background, which could be a pure mate-
rial or uniform microstructure. The thermal conductivities and
relative periodic positioning of particle A and particle B are tail-
ored such that the influence of periodic particles on the thermal
transfer of the background is removed. Thus, we named the mech-
anism “periodic interparticle interaction.” Furthermore, we found
the mathematical equivalence between the formula describing
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periodic interparticle interaction and the Bruggeman formula.
Our mechanism is an improvement or, at least, an alternative to
previous mechanisms requiring asymmetric interactions.

However, in the mechanism proposed in our previous work,
two constraints are placed to make the mathematical derivation fea-
sible. The first constraint is that particles are arranged in the sim-
plest lattice that exists: a square lattice. The second constraint is
that particles are alternately positioned along both the horizontal
and vertical directions. One can readily imagine that by relaxing
these two constraints, anisotropy will be introduced, which would
make the mathematical derivation considerably more complicated,
if a closed form derivation exists.

In this work, we propose a completely different approach, a
machine learning-based approach, to solve the problem of employ-
ing periodic interparticle interactions to realize thermal transpar-
ency while relaxing the lattice type from square to rectangular and
allowing arbitrary relative positioning of particle A and particle B,
as long as there is no overlapping between the particles. The essen-
tial difference between a square lattice and a rectangular lattice is
that a rectangular lattice introduces geometric anisotropy, which
leads to anisotropic thermal conductivity. Varying the relative posi-
tioning of particle A and particle B brings us the ability to manipu-
late the local thermal field. Therefore, generalizing the lattice type
and allowing the relative positioning of particle A and particle B to
vary presents at least two more degrees of freedom to manipulate
temperature distribution or heat transfer behavior. Our work dem-
onstrates that a machine learning approach can be highly effective
in finding the thermal conductivities and relative positioning of
particle A and particle B to realize the desired thermal transparency
while allowing anisotropy, which could pose an intractable
problem, by using a purely mathematical approach.

II. MACHINE LEARNING AS AN APPROACH TO THE
INVERSE DESIGN PROBLEM

The problem that we solve in this work can be formulated as an
inverse design problem. The parameters describing the thermal con-
ductivity and positioning of particle A and particle B to form the
lattice are considered design parameters. Then, the inverse design
problem presented in this work can be described as finding a set or
multiple sets of design parameters given the desired thermal transfer
behavior so that the corresponding system produces the desired
thermal transfer behavior. To make the investigation practical, one
usually limits the measurement and calculation of thermal transfer
behavior on a baseline. This is what we did in our previous work
(see Fig. 3 in Ref. 26 and Figs. 7 and 8 in this paper), where the
thermal fluxes were calculated on a baseline located at x ¼ �6 cm
relative to the origin, which is located at the center of the simulation
box. In this work, the baseline is further discretized into 400 equally
distanced points, on which thermal fluxes are evaluated. Therefore,
the response is simplified into a 400-dimensional response vector.

Traditionally, inverse design problems are tackled by using
either analytical (or semi-analytical) modeling,27–33 such as the mech-
anism proposed in our previous work,26 or a brute-force sweep over
the design parameter space.34 These two kinds of approaches can
only address simple systems where analytical modeling is feasible, or
a brute-force sweep is computationally tractable. To tackle more

complex problems, evolutionary approaches35,36 have been proposed
to reduce the computational cost compared to the brute-force sweep.
However, evolutionary approaches still suffer from drawbacks; for
example, finding the global optimum of a problem is not guaranteed,
and only one inverse design problem can be addressed at a time (i.e.,
a small variation in the design objective requires cold-starting the
evolution process). Moreover, for large-scale inverse design problems,
evolutionary approaches are still too computationally expensive.

In recent years, machine learning-based approaches have
been proposed to tackle inverse design problems with remarkable
success.37–53 Most of these works employ a neural network (NN)
(Fig. 1) as the backbone to solve the problem. To comply with the
standard nomenclature used in both academia and industry, we avoid
the use of “deep learning” to describe the aforementioned machine
learning-based approaches and the approach in this work, as deep
learning typically involves NN with dozens of hidden layers. The
NNs in the aforementioned machine learning-based approaches and
in this work are not deep enough to qualify as deep NNs.

A typical workflow employing an NN to tackle inverse design
problems involves first generating a training dataset (by numerical
simulations, or experiments) that relates the design space (parame-
trized as design parameters) to the response space (usually repre-
sented as response vectors). Then, a feed-forward NN solving the
forward problem is trained by using the design parameters as the
inputs and the response vectors as the outputs. If the training of
such a feed-forward NN converges, one can then perform a brute-
force sweep over the design space to find optimal design parameter
set(s) that can generate the desired response. A brute-force sweep
over the design space using an NN is several orders less expensive
in terms of the computational cost than a brute-force sweep over
the design space by direct numerical simulations. However, a naïve
and straightforward implementation of this approach can be prob-
lematic. For example, to accurately depict the response of a simple
thermal metamaterial device or design, hundreds or even more sam-
pling points need to be taken to represent the response space to
capture the finest features in scale. This means that the width (i.e.,
the number of neurons) of the output layer of the NN has to be in
the same order. Even with a shallow NN and a limited number of

FIG. 1. A schematic diagram of a feed-forward NN. The leftmost layer serves
as the input layer, followed by a series of hidden layers with various widths and
an output layer on the right side.
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design parameters, the large number of weights in the NN that need
to be trained mandates a large training set, without which the NN
would be prone to overfitting. However, generating a large training
set for the NN would defeat the purpose of using machine learning
to tackle the inverse design problem. Conversely, a feed-forward NN
that solves the inverse problem can be trained by using the response
vector as the inputs and the design parameters as the outputs. Once
the training of such an NN converges, one can readily obtain a
design parameter set by feeding the desired response vector as the
inputs to the NN.

However, training an NN to solve such an inverse problem
can be intrinsically infeasible, manifested in a training process that
is difficult or impossible to converge. The root cause of this issue is
that mapping the design space to the response space could be
intrinsically many to one. As we will demonstrate in this paper,
multiple design parameter sets can correspond to the same (or very
similar) response vector. This many-to-one mapping from the
design space to the response space translates into a one-to-many
relationship between the inputs and the outputs of the NN for an
inverse problem. Such an NN is generally not trainable, as the
one-to-many relationship causes conflicting optimization objectives
during the NN training process (i.e., the backpropagation algorithm
is confused by whether it should adjust the weights of the NN to
minimize the loss relative to one ground truth design parameter set
or another). Several techniques have been proposed to alleviate the
issue. Kabir et al. attempted to circumvent the problem by remov-
ing some training datasets that would otherwise cause conflicting
optimization objectives during the NN training process.45 This can be
shown as essentially smoothing out the training dataset to make the
mapping from the response space to the design space into an injective
function.54 Other types of NNs, such as tandem networks,37 or gener-
ative adversarial networks (GANs)39 were also proposed to address
the many-to-one issue with some success.

Recently, Kiarashinejad et al. proposed a new approach54 for
the inverse problem of designing electromagnetic nanostructures,
with remarkable success in addressing both the network-size issue
and the many-to-one mapping issue. The essential innovation in
their methodology is applying autoencoder-based dimensionality
reduction to both the design space and the response space. With
the design space converted into the reduced design space, and the
response space converted into the reduced response space by apply-
ing dimensionality reduction, the many-to-one design space to
response space mapping can be converted to a one-to-one reduced
design space to reduced response space mapping, which essentially
solves the many-to-one mapping issue and greatly facilitate the
training of NN for the inverse problem. We draw a close analogy
between the problems they tackled and the problem we face (i.e.,
the inverse design problem of realizing thermal transparency with
periodic interparticle interaction) and find that their approach for
the inverse problem of designing electromagnetic nanostructures
can be readily transferable to solve our problem.

The relationships between the original and reduced design space
and the original and reduced response space are illustrated in Fig. 2.
The mappings from the original design space to the reduced design
space, as well as to the response space, are many-to-one. Each
mapping between the reduced design space, the reduced response
space, and the original response space is one-to-one. Therefore, the

issue of many-to-one mappings between the original design space
and the original response space is tackled by removing the redundant
dimensions of the original design space, which can be represented as
the nonlinear combinations of the incompressible dimensions of the
reduced design space.

III. NN ARCHITECTURES FOR THE INVERSE DESIGN
PROBLEM

An autoencoder55 is a widely used type of NN, which is com-
posed of an encoder and a decoder [Fig. 3(a)]. The encoder com-
presses the inputs into an efficient latent representation which is
decompressed by the decoder into the outputs. For an autoencoder,
the input and output layers always have an equal number of neurons,
while the middle, hidden layer (the bottleneck layer) usually has
fewer neurons. The compression of the inputs and subsequent
decompression produces reconstructions of the inputs, as the autoen-
coder tries to reproduce the inputs while learning an efficient repre-
sentation of the inputs. The cost function for training an autoencoder
measures the difference between the inputs and reconstructions. An
autoencoder comprised of multiple symmetrical hidden layers is
called a stacked autoencoder. Intuitively, the larger capacity of a
stacked autoencoder gives it the power to learn more complex struc-
ture of the data. However, an overly large (deep, wide, or both)
stacked autoencoder can disastrously overfit the dataset.56 In practice,
one usually limits the depth of a stacked autoencoder to three hidden
layers, which includes the bottleneck layer.56

An autoencoder can efficiently compress high-dimensional data
to low-dimensional representations. This makes an autoencoder
extremely useful for reducing the dimensionality of both the design
parameter sets [Fig. 3(b)] and the response vectors [Fig. 3(a)].
Moreover, once the dimensionality reduction of both the design
parameter space and the response space is achieved, the issue of
many-to-one design space to response space mapping is essentially
solved. Mapping from the reduced design space to the reduced
response space is generally one-to-one, making training an NN to
solve the inverse design problem feasible.

We use the standard architecture for a stacked autoencoder to
compress the response vector from 400 to 10 dimensions. As we will
demonstrate, the architecture of the stacked autoencoder to compress

FIG. 2. The relationships between the original and reduced design space and
the original and reduced response space.
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the response space vector is found by employing a grid search over
the hyperparameter space of the width of each hidden layer.

As for the dimensionality reduction for the design space, a
stacked autoencoder with a different architecture is used [Fig. 3(b)].
Instead of using the design parameters as the output of the
autoencoder, the reduced response vectors obtained from the bot-
tleneck layer of the autoencoder performing the dimensionality
reduction for the response space are used. Again, the architecture
of the stacked autoencoder for the design space dimensionality
reduction is searched by performing a grid search over the
varying width of each hidden layer.

With the datasets in the reduced design space and the reduced
response space in hand, we are ready to train an NN to solve the
inverse design problem. As there is no many-to-one issue in train-
ing the NN for the inverse design problem, the standard procedure

for training a feed-forward NN (a multilayer perceptron) is applied
[Fig. 3(c)]. Now, given a response vector, the corresponding
one-to-one reduced design parameter set can be obtained by first
using the encoder in Fig. 3(a) to generate the reduced response
vector, then feeding it as the inputs to the feed-forward NN in
Fig. 3(c) to output the reduced design parameter set.

The final step involves restoring the reduced design parameter
set to the original design parameter set. To accomplish this task, the
encoder in Fig. 3(b) is extracted from the original stacked autoen-
coder to form a standalone NN [see Fig. 3(d)]. The inputs for the
standalone NN are the original design parameter set, and the outputs
are the reduced design parameter set. Given a reduced design param-
eter set, we perform a grid search over the original design space to
find the design parameter set(s) that maps to the given reduced
design parameter set through the NN. The grid search over the

FIG. 3. Schematic diagrams of the NN
architectures. (a) An autoencoder to
map the response vector to the
reduced response vector by performing
dimensionality reduction. (b) An NN to
map the design parameters to the
reduced design parameters by per-
forming dimensionality reduction. (c)
An NN to solve the inverse design
problem, with the reduced response
vector serving as the inputs, and the
reduced design parameters serving as
the outputs. (d) The encoder part of
(c), which is used to perform a grid
search of the design parameters to find
the design parameters that can map to
the desired reduced design
parameters.
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original design space can be performed in an embarrassingly parallel
fashion by employing a modern multicore CPU or a GPU, as each
point in the grid search is independent.

In summary, the procedure of solving the inverse design
problem of finding the optimal design parameter sets given a
response vector can be divided into three steps. First, dimensionality

reduction for the original design space and the original response
space is performed by training stacked autoencoders. The bottleneck
layers of the trained autoencoders represent the reduced design
parameter sets and the reduced response vectors, respectively. Then, a
feedforward NN is trained by using the reduced response vectors as
the inputs and the reduced design parameter sets as the outputs.

FIG. 4. (a)–(d) Periodic composite
material and the basic structures in
Ref. 26, where a square lattice is
employed. (e) An example of the peri-
odic structures employed in this work,
in which particle A and particle B are
in their respective rectangular lattices.
( f ) The relative positioning between a
pairing particle A and particle B is
parametrized by the distance R
between their centers and the angular
position f relative to the x axis. (a)–(d)
are adapted from Ref. 26.
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Finally, the reduced design parameter sets are restored to the original
design parameter sets by performing a grid search over the inputs for
the encoder part of the stacked autoencoder to reduce the dimension-
ality of the original design space.

IV. METHODS

Compared to our previous work26 in which a square lattice for
periodic particles is used, we relax the requirement into a rectangu-
lar lattice in this work [Fig. 4(e)]. Although it may seem, at first

TABLE I. Ranges of the design parameters, in which the design parameter sets for
the training dataset are randomly generated. The range for R is selected to avoid
overlapping between particle A and particle B.

Design
parameter Range

Design
parameter Range

dy (0.8, 1.2) cm e (0.05, 0.2)
R (0.67, 1.36) cm κρρ (0, 1) Wm−1 K−1

f (� π
4 , π

4 ) κθθ (0, 1) Wm−1 K−1

pa (0.05, 0.4) κb (0, 1) Wm−1 K−1

pb (0.05, 0.4) κm (0, 1) Wm−1K−1

FIG. 5. The effect of the dimensionality of the reduced response space on the
reconstruction MSE. (a) The reconstruction MSE for the response vector by the
NN architecture in Fig. 3(a), as a function of the dimensionality of the reduced
response space. The logarithmic reconstruction MSE is shown in the inset. The
fivefold cross validation results are represented in different colors. (b) A sample
system in the test set is selected to demonstrate the reconstructed response
vectors for different dimensionalities of the reduced response space.

FIG. 6. The effect of the dimensionality of the reduced design space on the
reconstruction MSE. (a) The reconstruction MSE for the response vector by
the NN architecture in Fig. 3 as a function of the dimensionalities of both the
reduced design space and the reduced response space. The architecture of the
NN is formed by cascading the NN in Fig. 3(b) to the decoder part of Fig. 3(a).
The variance of the reconstruction MSE between different NN models with the
same combination of reduced design space and response space dimensionali-
ties generated by the CV process is low (detailed data not included). And we
only demonstrate the best NN models (i.e., with the least reconstruction MSE
from the ground truth) selected by the CV process. (b) A sample system in the
test set is selected to demonstrate the reconstructed response vectors for differ-
ent dimensionalities of the reduced design space.
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glance, that two design parameters, dx and dy, are needed to
describe the periodic particle lattice, only the ratio between the two
design parameters matters. We fix the design parameter dx to 1 cm.
More precisely, the ellipses (particle B) are fixed on a horizontally

and vertically alternating rectangular lattice. The spacing between
two horizontally adjacent ellipses is 2*dx, and the spacing between
two vertically adjacent ellipses is 2*dy. The circles (particle A) are
also arranged in a rectangular lattice in the same style. However,

FIG. 7. Finite-element simulations of thermal transparency with heat fluxes JS � 82Wm�2. The size of the simulation box is 20� 20 cm2, and that of the periodic com-
posite material is 10� 10 cm2. The baseline for measuring heat fluxes is located at x ¼ �6 cm (not shown in the figures), and the origin is located at the center of the
simulation box. White lines represent isotherms. [(a) and (b)] The design parameters are shown as system A in Table II. [(c) and (d)] The design parameters are shown as
system B in Table II. [(b) and (d)] Particle A is represented as circular regions, while particle B is represented as elliptic regions. Blue, green, and red lines in (a) and (c)
are simulated heat fluxes measured at the baseline with only particle A, only particle B, and particle A plus particle B. Brown lines in (a) and (c) are the heat fluxes mea-
sured at the baseline, generated by the system with the least MSE distance to the perfect thermal transparency with heat fluxes JS � 82Wm�2, out of all the systems in
the randomly generated training set.

TABLE II. The design parameters of two systems (A and B) to achieve thermal transparency at the baseline located at x =−6 cm with heat fluxes JS≈ 82 Wm−2 . System A
corresponds to Figs. 7(a) and 7(b), and system B corresponds to Figs. 7(c) and 7(d). dy and R are in (cm), κρρ, κθθ, κb, and κm are in (Wm−1 K−1), and the other design
parameters are unitless. The MSE between the two sets of design parameters is 1.05 × 10−02.

Design parameter dy R f pa pb e κρρ κθθ κb κm

A 1.02 1.20 −0.155 0.122 0.0534 1.99 0.446 0.446 0.337 0.410
B 1.02 0.979 −0.155 0.122 0.0534 1.99 0.446 0.446 0.337 0.410
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the relative positioning between adjacent circles and ellipses is allowed
to vary. We denote the relative positioning between pairing circles and
ellipses with a cylindrical coordinate R and f [see Fig. 4(f)], with the
origin located at the center of the ellipse. R denotes the distance
between the centers of pairing circle and ellipse, while f denotes the
angle between the line connecting the centers of pairing circle and
ellipse and the horizontal axis. The circle regions (particle A) have
anisotropic thermal conductivities [a purple graded circle with a
radius r, Fig. 4(c)], whereas the ellipse regions (particle B) are defined
by isotropic thermal conductivities [a red ellipse with a semi minor
axis s and semi major axis t, and e ¼ s=t, Fig. 4(d)]. We denote the
thermal conductivities of the circle regions (particle A), ellipse regions

(particle B), and the matrix to be κ
$
a ¼ diag κρρ, κθθ

� �
, κb, and κm,

respectively. κ
$
a is represented in the cylindrical coordinates ρ, θð Þ,

whose origin is at the center of particle A. pa ¼πr2= 2dx*dy
� �� �

,
pb ¼πst= 2dx*dy

� �� �
, and pm ¼ 1� pa � pb are the area fraction of

particle A, particle B, and matrix, respectively.
We generate the dataset to train the NNs by performing

finite-element method (FEM) simulations using the commercial
software package COMSOL Multiphysics.57 A total of 50 000 FEM
simulations were performed with randomly generated design
parameters within predefined ranges, which are listed in Table I.
Note that a randomly generated design parameter set is not neces-
sarily valid, as overlapping between particle A and particle B may
occur. A customized Python code is written to filter out invalid
design parameter set. We perform a fivefold cross validation (CV)
to find the best NN models as well as checking the robustness of
NN training against different ways of splitting the training and
test sets. In each fold, the design parameter sets and the response
vectors generated from discretizing thermal flux in 40 000 simula-
tions are used as the training set, with the remaining 10 000 simu-
lations used as the test set.

We use TensorFlow58 as the framework to train the NNs and
use pandas59 for data analysis. The trained NN models are also
used in the grid search to restore the reduced design parameter sets
to the original design parameter sets. The FEM simulations and
NN training were primarily performed on a dual-socket 24 physical
core Xeon Haswell-EP server.

V. RESULTS

First, we use the training set to perform a grid search for two
hyperparameters for the autoencoder [Fig. 3(a)] by performing
response vector dimensionality reduction [i.e., the number of
hidden layers and neurons in the bottleneck layer (the bottleneck
layer width)]. The range in the grid search for the number of
hidden layers is 3–7, while the bottleneck layer width is in the
range of 1–20. The reconstruction mean squared error (MSE)
between the inputs and the outputs of a specific autoencoder
architecture is used to find the optimal autoencoder architecture.
The inputs for an autoencoder during training are 400 dimen-
sional vectors from discretizing heat fluxes measured at the base-
line x ¼ �6 cm for the 40 000 simulated systems in the training
set. We find that autoencoders with three hidden layers generally
outperform the other architectures, which is consistent with the

FIG. 8. Finite-element simulations of thermal transparency with heat fluxes
JS � 100Wm�2. The size of the simulation box is 20� 20 cm2, and that of the
periodic composite material is 10� 10 cm2. The baseline for measuring heat
fluxes is located at x ¼ �6 cm (not shown in the figures), and the origin is
located at the center of the simulation box. White lines represent isotherms. The
design parameters for the red line in (a) and (b) are shown as system C in
Table IV. The design parameters for the brown line in (a) and (c) are shown as
system D in Table IV. [(b) and (c)] Particle A is represented as circular regions,
while particle B is represented as elliptic regions. Blue, green, and red lines in
(a) are simulated heat fluxes measured at the baseline with only particle A, only
particle B, and particle A plus particle B. Brown lines in (a) are the heat fluxes
measured at the baseline, generated by the system with the least MSE distance
to the perfect thermal transparency with heat fluxes JS � 100Wm�2, out of the
systems in the randomly generated training set.
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general experience that deep autoencoders tend to overfit the
training data.56

Figure 5(a) shows the reconstruction MSE between the inputs
and outputs for a series of trained autoencoders with three hidden
layers and varying bottleneck layer widths (1–20), evaluated by the
CV process. It is clear that beyond a width of 10 for the bottleneck
layer, the reconstruction MSE ceases to improve as the width
increases. Furthermore, having 10 neurons in the bottleneck layer is
sufficient for the purpose of dimensionality reduction for the
response space, as evidenced by the low MSE. Figure 5(b) shows the
original (ground truth) heat-flux curve and reconstructed curves with
varying dimensionalities of the reduced response space for a simu-
lated system picked randomly from the test set. The reconstructed
curves with reduced response space dimensions of 10 and 20 can
reproduce the shape of the original curve with satisfactory precision.
Thus, we choose 10 as the dimension of the reduced response space,
leading to the autoencoder architecture 200-50-10-50-200.

Then, we perform a similar grid search to find the optimal
architecture for the NN [Fig. 3(b)] to reduce the dimensionality of
the design space. The backbone of the architecture for the grid search
is 10-20-20-X-20-30-Y-50-400, where X stands for the dimension for
the reduced design space with a range of 1–10 and Y stands for the
dimension for the reduced response space with 1, 5, 10, and 20.
Figure 6(a) shows the reconstruction MSE as a function of the dimen-
sion of the reduced design space and the dimension of the reduced
response space. Figure 6(b) shows the original (ground truth) heat-
flux curve and reconstructed curves with varying dimensionalities of
the reduced design space for the same simulated system depicted in
Fig. 5(b). It is clear that the dimensionality of the design space can be
reduced to 6 without significantly sacrificing the precision of recon-
structing the response vector, and the dimensionality for the response
space can be reduced to 10, as the reconstruction MSE for the
response space dimensionalities of 10 and 20 almost overlap when
the dimensionality in the design space goes beyond 4.

Now, we proceed to the final phase of NN training to solve
the inverse design problem for thermal transparency. To accom-
plish this, we assemble an NN to use the reduced response vectors
as the inputs and the reduced design parameter sets as the outputs
[see Fig. 3(c)]. The reduced response vectors are derived from
compressing the response vectors in the simulated systems in the
training set by using the encoder part of the NN in Fig. 3(a)
(400-50-10-50-400). The reduced design parameter sets are derived
from compressing the original design parameters for the same
simulated systems by using the encoder part of the NN in Fig. 3(b)
(10-20-20-6). The training process quickly converges, indicating
the absence of the issue of one-to-many mappings between the
reduced response vector and reduced design parameters. Once the
NN is trained to solve the inverse problem, we can feed a desired
response vector as the inputs to the NN and get the corresponding
reduced design parameters. The final part of the workflow involves
restoring the reduced design parameters to the original design
parameters. For this task, the encoder part of Fig. 3(b) for the
dimensionality reduction of the design parameter space is extracted
to form a separate NN [Fig. 3(d)]. Then, a grid search over the
viable design parameter ranges (10 intervals for each parameter) is
performed to find the corresponding original design parameter(s)
to the reduced design parameter. The configurations of design
parameters are ranked by using the MSE between their correspond-
ing reduced design parameters and the desired reduced design
parameters. The top 100 configurations of design parameters are
simulated by FEMs, among which the best configurations for the
purpose of thermal transparency are selected.

To demonstrate the power of the entire workflow, we solve
two problems of realizing thermal transparency for heat fluxes
JS � 82 Wm�2 and JS � 100 Wm�2 measured at the baseline
x ¼ �6 cm.

As for the problem of realizing thermal transparency for
heat fluxes JS � 82 Wm�2, we find two configurations of design

TABLE IV. The design parameters of two systems (C and D) to achieve thermal transparency at the baseline located at x =−6 cm with heat fluxes JS≈ 100 Wm−2 . System
C corresponds to Fig. 8(b), and system D corresponds to Fig. 8(c). dy and R are in (cm), κρρ, κθθ, κb and κm are in (Wm−1 K−1), and the other design parameters are unit-
less. The MSE between the two sets of design parameters is 3.59 × 10−02.

Design parameter dy R f pa pb e κρρ κθθ κb κm

C 0.978 1.12 −0.155 0.125 0.128 1.66 0.446 0.446 0.554 0.500
D 0.998 1.27 −0.189 0.0526 0.0759 1.74 0.785 0.746 0.385 0.499

TABLE III. The reduced design parameters of two systems (A and B) to achieve
thermal transparency at the baseline located at x =−6 cm with heat fluxes
JS≈ 82 Wm−2 . System A corresponds to Figs. 7(a) and 7(b), and system B corre-
sponds to Figs. 7(c) and 7(d). The reduced design parameters are inferenced by
using the encoder part of the NN shown in Fig. 3(b). The MSE between the two
sets of reduced design parameters is 4.57 × 10−07.

Reduced design
parameter 1 2 3 4 5 6

A 0.178 0.687 0.920 0.781 0.0599 0.995
B 0.178 0.687 0.919 0.782 0.0608 0.995

TABLE V. The reduced design parameters of two systems (C and D) to achieve
thermal transparency at the baseline located at x =−6 cm with heat fluxes
JS ≈ 100 Wm−2. System C corresponds to Fig. 8(b), and system D corresponds to
Fig. 8(c). The reduced design parameters are inferenced by using the encoder part
of the NN shown in Fig. 3(b). The MSE between the two sets of reduced design
parameters is 1.00 × 10−05.

Reduced design
parameter 1 2 3 4 5 6

C 0.178 0.687 0.920 0.781 0.0599 0.995
D 0.178 0.687 0.919 0.782 0.0608 0.995
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parameters, as shown in Fig. 7 and Table II. To realize thermal
transparency, the two systems with the design parameters we find
are superior to the best one in the training set with randomly gen-
erated design parameters. We also calculate the MSE between the
two sets of design parameters we found and the MSE between
their corresponding reduced design parameters (Table III). The
MSE for the reduced design parameters is four orders lower than
the MSE of the original design parameters, indicating the efficacy
of dimensionality reduction.

As for the problem of realizing thermal transparency for heat
fluxes JS � 100 Wm�2, we find a system in the training set whose
response vector is in close proximity to the perfect response vector.
We also calculate a set of design parameters from our workflow of
solving the inverse design problem. The two systems and their
responses are shown in Fig. 8. The values for the design parameters
and the reduced design parameters for the two systems are shown
in Table IV. The system with the calculated design parameter per-
forms slightly better than the coincidentally and randomly gener-
ated system. The most convincing evidence of the correctness and
efficacy of our workflow for solving the inverse design problem is
that two systems with significantly different design parameters
have very similar reduced design parameters, as evidenced by the
MSE between the reduced design parameters, which is more than
three orders lower than the MSE between the design parameters
(Table V). This is an overwhelmingly convincing demonstration
of the capability of our trained NNs to map different configura-
tions of design parameters to the same (or very similar) configura-
tion of reduced design parameters for the purpose of realizing
thermal transparency. Therefore, the most challenging issue (i.e.,
the many-to-one mapping from the design space to the response
space) has been tackled by our NN approach.

VI. CONCLUSION

In this paper, we design a systematic workflow of employing
the NN-based machine learning approach to realize thermal trans-
parency by using thermal metamaterial-based periodic interparticle
interactions. The problem itself is a generalization of the problem we
have solved in our previous work, by relaxing the constraints and
allowing a rectangle lattice and arbitrary relative position between
the two types of particles. The key success of our approach originates
from training autoencoders to reduce the dimensionalities of
both the design space and the response space, solving the issue of
many-to-one mappings between the design space and the response
space which makes many previous NN-based approaches inutile,
and the issue of training computational cost. Our approach success-
fully found design parameter set(s) for realizing thermal transpar-
ency with designated heat fluxes.
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