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a b s t r a c t 

The classical effective medium theory (EMT) provides a powerful tool in designing heterogeneous- 

composite functional thermal metadevices. But it is usually appropriate for spatially symmetric or ge- 

ometrically isotropic systems, which limits the flexibility or adjustability in control. Here, we develop 

a generalized EMT to predict effective thermal conductivities of heterogeneous systems with ellipti- 

cal (or ellipsoidal) inclusions. With the generalized EMT, omnidirectional thermal invisibility and direc- 

tional Janus thermal illusion are designed and experimentally demonstrated just by tuning orientations 

of shape-anisotropy particles. In particular, we try to clarify the respective scopes of the generalized 

Maxwell-Garnett and Bruggeman theory based on both theoretical interpretations and numerical simula- 

tions. Our work may offer a promising fundamental framework and application prototype in elaborating 

thermal metadevices with asymmetry, irregularity, or anisotropy in configuration. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Designing thermal metamaterials usually depends on spatially- 

arying thermal parameters [1,2] . Various novel functions such as 

hermal cloaking [3–5] , concentrating [5,6] , transparency [7,8] , or 

llusion [9,10] request specific thermal conductivity distribution in 

ach functional zone. The requested thermal conductivities rarely 

xist in a single naturally-occurring material. So heterogeneous 

omposites play core roles in realizing thermal metamaterials [11–

5] . Then how to exactly predict effective thermal conductivities 

f composites becomes a significant topic in this field. With in- 

reasing complicated structures [16–19] and shrinking critical sizes 

20,21] in thermal metadevices for elaborate control of heat flow, 

his issue will be extremely crucial. 

Fortunately, the classical effective medium theory (EMT) pro- 

ides a powerful framework for solving this problem [22,23] . Par- 

icularly, the Maxwell-Garnett (M-G) theory [24] and Bruggeman 

heory [25] often serve for handling multi-phase systems with 

symmetry and symmetry in components, respectively. Generally, 

he EMT for treating such systems requests geometrical isotropy. 
∗ Corresponding author.: 

E-mail addresses: 18110190048@fudan.edu.cn (J. Wang), oyxp2003@aliyun.com 
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aying, no shape factor of components is considered in the formu- 

as. This category of system has been widely employed in thermal 

etamaterial design [26–28] . However, recent researches of ther- 

al metamaterials have witnessed a growing focus on anisotropic 

29–31] , asymmetry [32–35] or irregular [36,37] configurations. 

lliptical-particle composites [29,30,36,37] have shown potentials 

n realizing unprecedented functionalities beyond cycloidal-particle 

nes due to their high degrees of freedom in control. But the 

MT for handling such geometrically-anisotropic thermal systems 

s unsatisfactory. The generalized EMT of geometrically anisotropic 

omposite systems in electromagnetism [38–41] was built previ- 

usly, but its counterparts in thermotics is still fragmentary and 

nadequate. This may be because of the intrinsic difference be- 

ween electromagnetics and thermotics. Particularly, some con- 

epts such as frequency or chromatic dispersion have no anal- 

gy in thermal diffusion systems. Another issue is that the ap- 

licative conditions of the M-G theory and Bruggeman theory in 

hermotics are not clearly identified. Although they may be ap- 

roximately equivalent in predicting effective thermal conductiv- 

ties of asymmetrical-component systems (for example, magnetic 

anofluids [42,43] ), it is essential to clarify the criteria of these two 

heories. 

To solve the problems mentioned above, we systematically for- 

ulate the generalized EMT for geometrically-anisotropic hetero- 
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Fig. 1. (a) Heterogeneous composites are categorized in the four-quadrant system by particles’ orientation and connection. Two sets of coordinates are built on the matrix 

and elliptical inclusion respectively, which denote to the main coordinate ( X, Y ) and sub-coordinate ( x, y ). (b)-(c) Theory and simulation results of the effective thermal 

conductivities on particle-area-fraction dependence, which are based on the four models in (a). I and II are corresponding to the generalized M-G (blue line) theory and III 

and IV are corresponding to the generalized Bruggeman (red line) theory. The thermal conductivities of matrix and inclusion are 400 and 0 . 026 Wm 

−1 K −1 , which can be 

regarded as κm � κi . The quantity and aspect ratio of inclusions are kept at 225 and 2 : 1 . Error bars are marked in black, which denote standard deviation of three-times 

simulations at each simulated area-fraction position. 
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eneous thermal systems based on the mean-field-approximation 

oncept. Without loss of generality, we start from the two- 

imensional inclusion-matrix models, and classify heterogeneous 

omposites by elliptical (or ellipsoidal) inclusions’ orientation and 

onnectivity; see Fig. 1 . We discuss the concrete forms of gen- 

ralized EMT by applying them to these four models shown in 

ig. 1 , and reveal the underlying mechanisms of corresponding 

heories. With the help of additional orientation control in such 

eometrically-anisotropic systems, omnidirectional thermal invisi- 

ility and directional Janus thermal illusion can be achieved just 

y adjusting main-axis directions of inclusions. Here, the former 

eans no distortion in backgrounds regardless of heat sources’ po- 

itions, while the latter denotes different illusions if boundary heat 

ources are applied at different directions. 
2 
. Theory 

First, we consider an infinite-matrix approximation model to 

gnore non-local effects for simplification of analyses. The ellipti- 

al particles are embedded in an isotropic matrix in random dis- 

ribution without connection. Because percolation is inhibited in 

his system, the M-G theory is usually employed for treating this 

ase. We set two groups of Cartesian coordinate systems to facil- 

tate analyses. One is fixed on the matrix as the main coordinate 

X, Y ) , and the other is fixed on each elliptical particle as the sub-

oordinates (x, y ) , as the right panel of Fig. 1 (a) shown. We can

ive the expression of effective thermal conductivity in (X, Y ) as 

e = 

[
κeX 

κeY 

]
. (1) 
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enerally, in linear diffusive systems, flow has a linear relation 

ith force. Supposing a thermal field (external temperature gradi- 

nt) E 0 is applied along the X axis, the effective thermal conduc- 

ivity κeX of this system can be defined according to the mean-field 

heory: 

eX = 

〈 J tot 〉 
〈 E tot 〉 = 

f i 〈 J i 〉 + f m 

〈 J m 

〉 
f i 〈 E i 〉 + f m 

〈 E m 

〉 = 

f i κi 〈 E i 〉 + f m 

κm 

〈 E m 

〉 
f i 〈 E i 〉 + f m 

〈 E m 

〉 , (2) 

here the symbol 〈 ... 〉 means statistical average over the area. J 

nd E are heat flow and thermal field respectively. Subscripts tot, i 

nd m refer to total medium, inclusion and matrix. f and κ are the 

rea fraction and thermal conductivity respectively. Eq. (2) implies 

hat total heat flows and thermal fields are statistical averages of 

ocal flows and fields. We introduce the field factor η to describe 

he relation between the inclusion thermal field 〈 E i 〉 and the ex- 

ernal thermal field 〈 E 0 〉 as 

 E i 〉 = ηE 0 . (3) 

nd the matrix thermal field can be written as 

 E m 

〉 = E 0 , (4) 

ue to the infinite matrix approximation [30] . Then, Eq. (2) be- 

omes 

eX = 

f i ηκi + f m 

κm 

f i η + f m 

. (5) 

n explicit definition of orientation is that “ordered” means 

x, y ) overlaps with (X, Y ) , while “disordered” means (x, y ) spins

quiprobably in (X, Y ) . So for the orderly-oriented model (quadrant 

I in Fig. 1 (a)), η is expressed as 

II = 

κm 

κm 

+ g x (κi − κm 

) 
. (6) 

nd for the disorderly-oriented model (quadrant I in Fig. 1 (a)), η is 

xpressed as 

I = 

1 

2 

[
κm 

κm 

+ g x (κi − κm 

) 
+ 

κm 

κm 

+ g y (κi − κm 

) 

]
. (7) 

 x and g x are depolarization factors of elliptical particles along 

ain axes and secondary axes. Detailed descriptions of depolar- 

zation factors can be found in the Appendix A1. Substituting 

qs. (6) and (7) into Eq. (5) and combining with f i + f m 

= 1 , we

an obtain the generalized M-G theory as 

eX = κm 

+ 

f i 
κi −κm 

κm + g x (κi −κm ) 

1 − f i 
g x (κi −κm ) 

κm + g x (κi −κm ) 

κm 

, (8a) 

eY = κm 

+ 

f i 
κi −κm 

κm + g y (κi −κm ) 

1 − f i 
g y (κi −κm ) 

κm + g y (κi −κm ) 

κm 

(8b) 

or ordered-orientation systems and 

eX = κeY = κm 

+ 

f i 

[ 
κi −κm 

κm + g x (κi −κm ) 
+ 

κi −κm 

κm + g y (κi −κm ) 

] 

2 − f i 

[ 
g x (κi −κm ) 

κm + g x (κi −κm ) 
+ 

g y (κi −κm ) 

κm + g y (κi −κm ) 

] κm 

(9) 

or disordered-orientation systems. 

Till now, we have derived the generalized M-G theory in con- 

ideration of unconnected inclusions. However, if particles are al- 

owed to interconnect (quadrant III and IV in Fig. 1 (a)), percolation 

ay occur even though the area fraction of particles is very small. 

his means matrix and inclusion play equivalent roles in determin- 

ng the effective thermal conductivity of composite. So we have to 

esort to the Bruggeman theory for treating this case. Following 

ef. [39] , when particles’ main axes orient along the X axis [quad- 

ant III in Fig. 1 (a)] or totally disorderly [quadrant IV in Fig. 1 (a)],
3 
he corresponding polarizability β of inclusions and matrixes cor- 

esponding to III and IV can be written as 

I I I = 

κk − κeX 

κeX + g x (κk − κeX ) 
(10) 

nd 

IV = 

1 

2 

[
κk − κeX 

κeX + g x (κk − κeX ) 
+ 

κk − κeY 

κeY + g y (κk − κeY ) 

]
, (11) 

here the subscript k = i, m for inclusion and matrix respectively. 

aking the self-consistent condition 

∑ 

k 

f k βk = 0 , which means 

limination of components’ impact on the effective medium, we 

an write the generalized Bruggeman theory of binary inclusion- 

atrix systems as 

f i 
κi − κeX 

κeX + g x (κi − κeX ) 
+ (1 − f i ) 

κm 

− κeX 

κeX + g x (κm 

− κeX ) 
= 0 , (12a) 

f i 
κi − κeY 

κeY + g y (κi − κeY ) 
+ (1 − f i ) 

κm 

− κeY 

κeY + g y (κm 

− κeY ) 
= 0 (12b) 

or ordered-orientation systems and 

f i [ κi −κeX 

κeX + g x (κi −κeX ) 
+ 

κi −κeX 

κeX + g y (κi −κeX ) 
] 

(1 − f i ) [ κm −κeX 

κeX + g x (κm −κeX ) 
+ 

κm −κeX 

κeX + g y (κm −κeX ) 
] = 0 

(13) 

or disordered-orientation systems. It is noted that κeX can also be 

eplaced by κeY in Eq. (13) due to isotropic effective thermal con- 

uctivities in this case. 

Hereto, we have obtained the generalized M-G theory and 

ruggeman theory for calculating two-dimensional and two- 

omponent elliptical-particle-embedded composites’ thermal con- 

uctivities. We can readily expand these results to d-dimensional 

nd n -component systems. Then there will be n − 1 kinds of in- 

lusions with different f i and κi and one matrix. And each kind of 

nclusion has d dimensions. We still consider the X-axis directions. 

he common form of generalized M-G theory can be expressed as 

eX = κm 

+ 

n −1 ∑ 

i =1 

f i 
κi −κm 

κm + g ix (κi −κm ) 

1 −
n −1 ∑ 

i =1 

f i 
g ix (κi −κm ) 

κm + g ix (κi −κm ) 

κm 

(14) 

or ordered-orientation systems and 

eX = κeY = κm 

+ 

n −1 ∑ 

i =1 

f i 
d ∑ 

j=1 

κi −κm 

κm + g i j (κi −κm ) 

d −
n −1 ∑ 

i =1 

f i 
d ∑ 

j=1 

g i j (κi −κm ) 

κm + g i j (κi −κm ) 

κm 

(15) 

or disordered-orientation systems. Similarly, with self-consistent 

ondition 

∑ 

i 

f i βi = 0 , the generic form of generalized Bruggeman 

heory can be written as 

n 
 

i =1 

f i 
κi − κeX 

κe _ B 1 + g ix (κi − κeX ) 
= 0 (16) 

or ordered-orientation systems and 

n 
 

i =1 

f i 

d ∑ 

j=1 

κi − κeX 

κeX + g i j (κi − κeX ) 
= 0 (17) 

or disordered-orientation systems. 
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Fig. 2. Theoretical predictions and finite-element simulations of the generalized M-G theory [corresponding to model I and II in Fig. 1 (a)] for checking effects of periodicity 

[(a1) and (a2)], direction (b), and aspect ratio (c). The thermal conductivities of matrix and inclusion are 400 and 0 . 026 Wm 

−1 K −1 . (a1) and (a2) Theoretical predictions 

and simulation results of effective thermal conductivities on area-fraction dependence. Specifically, we show the simulations of periodic-distribution models (pink dots) for 

comparison. In (a2), main axes of elliptical particles orient along the X axis. (b) Theoretical and corresponding simulation results of effective thermal conductivities in X

(blue line or dots) and Y (yellow line or dots) directions. The model is model II. (c) Aspect-ratio-dependent relations of effective thermal conductivities. Here we only check 

the X direction’s values. Red and black lines and dots denote disordered (I) and ordered (II) systems respectively. 
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. Numerical analyses and simulations 

Here, we are in the position to verify the deduced generalized 

-G and Bruggeman theory [ Eqs. (8) - (9) and (12) - (13) ] by finite-

lement simulations. The common commercial software COMSOL 

ultiphysics [44] is employed for executing simulations. We adopt 

he models shown in Fig. 1 (a) and compare their simulation re- 

ults with the theoretical predictions. These quantitative verifica- 

ions of two-component case can be trivially expanded to the n - 

omponent one. Particularly, the thermal conductivities of parti- 

les and matrixes are set as 0.026 and 400 Wm 

−1 K 

−1 (which ap- 

roach air and copper respectively). Numbers of particles dispers- 

ng in the medium are taken as 225. We keep their aspect ratios 

o be 2 : 1 as a typical case of geometrically-anisotropic inclusions. 

o the g x and g y can be calculated as 1 / 3 and 2 / 3 respectively. It

s noted that the upper-bound area fractions of case I and II are 

.5, which is an automatical truncation point in our computing 

rocedures. This is because particles are not allowed to connect 

ach other, which can be interpreted by the close packing theory 

f axisymmetric particles [45] . On the other hand, case III and IV 

o not have this limition. E 0 is applied along the X axis. Com- 

aring Eqs. (8) - (9) and Eqs. (12) - (13) [corresponding to the blue

nd red solid lines in Figs. 1 (b) and (c)], we can see diametrically

ifferent effective-thermal-conductivity predictions. The theoretical 

ercolation threshold of red lines can be analytically obtained by 

aking κ = 0 in Eqs. (12) - (13) . In detail, for example, the perco-
i o

4 
ation threshold of area fraction in Eq. (12) is calculated to be 

f c = 1 − g x = 1 − 1 / 3 = 2 / 3 , and the effective thermal conductivity

an thus be expressed as 

eX = 

{
κm 

× (1 − f i / f c ) , f i < 2 / 3 

0 . f i ≥ 2 / 3 

(18) 

e execute simulations in each area point for five times and take 

heir averages and standard deviations, which are shown as sim- 

lation points and error bars in Figs. 1 (b) and (c). The simula- 

ion results echo with the according theories, verifying our as- 

umption that the generalized M-G and Bruggeman theories can 

e classified by whether there existing interconnection between 

nclusions. 

We further check the effects of periodicity, direction, and as- 

ect ratio on generalized M-G theory, see Fig. 2 . This will fa- 

ilitate device design. Figs. 2 (a1) and (a2) show comparisons of 

he generalized M-G theory and simulation results of random or 

eriodic composites. Periodicity is formed by a 15 × 15 particle 

rray. The quantity of particles keep equal to the random case 

n our simulations. We can see the simulation results almost fit 

he M-G theory. But stronger inclusive interaction in periodic sys- 

ems may introduce more impacts on the accuracy of theoreti- 

al predictions, which will deviate from the M-G theory. Besides, 

e check the direction effects of particles described in Eq. (8) , 

ee Fig. 2 (b). There is no obvious major- or minor- axis effects 

n the prediction accuracy. Saying, whether major or minor axes 
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Fig. 3. Simulations of omnidirectional thermal invisibility under line-heat-source conditions. Heat (400 K) and cold (300 K) sources are applied on left and right boundaries 

of devices. Backgrounds and central composites are 16 × 16 cm and 8 × 8 cm in size. Composites are matrix plus disorderly-oriented inclusions with random (a1) or periodic 

(a2) distributions. Another three reference groups are constructed by replacing central composites with sole background materials (a3), matrix materials (a4), and inclusion 

materials (a5). (b1)-(b5) are corresponding temperature distributions of (a1)-(a5) with isothermal lines in white. (c) Left panel is a sketch model for showing the data- 

extraction position marked in a red line. Right panel is the extracted data from (b1)-(b5) at red-line positions. 
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v

re along E 0 , the derived theories have similar performances on 

ffective-thermal-conductivity predictions. Furthermore, we study 

he aspect-ratio effects, see Fig. 2 (c). The area fraction f i is kept 

t 0.1. Aspect ratio ( a : b) varies from 1 : 1 (circle) to 6 : 1 (nearly

od-like). Effective thermal conductivities are changing with aspect 

atios, which is verified by both theory and simulation. Particu- 

arly, ordered (black line and dots) and disordered (red line and 

ots) orientations of particles lead to deviating trend of effective 

hermal conductivities with increasing aspect ratios. This is a spe- 

ific phenomenon which is inexistent in the classical M-G theory. 

he aspect-ratio effects on κe may contribute to designing con- 

inuously adjustable thermal conductivities with fixed-proportion 

omposites. 

. Device design and experimental verification 

Disordered and ordered orientations of particles lead to isotropy 

nd anisotropy in effective thermal conductivities. This feature will 

elp design multiple thermal metadevices just by adjusting par- 

icles’ orientations. Here, we demonstrate omnidirectional ther- 

al invisibility and Janus thermal illusion based on the general- 

zed EMT. Although these two functionalities have been realized 

n thermal systems, we refresh them by employing geometrical 

nisotropy in inclusions of composites. We first propose omni- 

irectional thermal invisibility with disorderly-oriented inclusions 

lus isotropic matrix, see Fig. 3 . Invisibility is defined as no dis- 

ortion of isothermal lines through the whole device. The ther- 
5 
al conductivities of inclusions and matrix are 0.026 and 400 

m 

−1 K 

−1 respectively. Congruent ellipses with 2 : 1 in aspect ra- 

ios are adopted as inclusions, whose total area fraction is kept at 

.1, which can be appropriately predicted by the generalized M- 

 theory [see Fig. 1 (c)]. With these conditions, the effective ther- 

al conductivity is calculated to be 320 Wm 

−1 K 

−1 by Eq. (9) . 

his value is fixed as the background in our design. We adopt two 

orts of particle distributions as randomness [ Fig. 3 (a1)]and peri- 

dicity [ Fig. 3 (a2)], and all inclusions are restricted in a 8 × 8 cm

ub-domain. The sub-domain is located in the center of the square 

ackground whose size ( L × L ) is 16 × 16 cm. The right three refer-

nce groups are sole background material [ Fig. 3 (a3)], sole matrix 

aterial [ Fig. 3 (a4)], and sole inclusion material [ Fig. 3 (a5)] em-

edded in the background. A 400 K heat source and a 300 K cold 

ource are placed at left and right boundaries respectively, and up- 

er and lower boundaries are kept thermally isolated, Figs. 3 (b1) 

nd (b2) show in-plane thermal invisibility, nearly equivalent to 

ig. 3 (b3). Some small shift of isothermal line at interfaces is due 

o the limited quantity of particles. As a contrast, Figs. 3 (b4) and 

b5) show obvious temperature deviations from Fig. 3 (b3). This is 

aused by thermal-conductivity mismatch between composites and 

ackgrounds. We can check temperature data on a vertical line as 

hown in Fig. 3 (c) for quantitative comparison. The red-marked 

ine is located at x = 3 cm. The temperature data of designed 

chemes in Figs. 3 (b1) and (b2) accord well with Fig. 3 (b3). For

urther verifying the omnidirectional feature of the designed in- 

isibility, we replace line sources with point heat sources in Fig. 4 . 
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Fig. 4. Simulations of omnidirectional thermal invisibility under point-heat-source conditions. (a1)-(c1) are same as Figs. 3(a1)-(a3). (a2)-(c3) are corresponding temperature- 

distribution behaviors to (a1)-(c1). The point heat source is 0.5 cm in radius and 100 Wm 

−2 in power. In (a2)-(c2), we put it at the bottom-left positions and keep left and 

bottom boundaries heat-insulated. Top and right boundaries are kept at 300 K. In (a3)-(c3), we put it at the central positions and keep all boundaries at 300 K. 
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e take the same models as Figs. 3 (a1)-(c1) in Figs. 4 (a1)-(c1), and

ut the point sources at the bottom-left [ Figs. 4 (a2)-(c2)] and cen- 

er [ Figs. 4 (a3)-(c3)]. The point source is kept at 0.5 cm radius in

ize and 100 Wm 

−2 in power. We can see similar isothermal line 

istributions in this three models, which confirms omnidirection 

f our invisibility design. The results also confirm the robustness 

f our design. 

On the other hand, anisotropy in ordered-orientation systems 

an result in another illusion design, which is called Janus thermal 

llusion. Here, Janus refers to that devices show different function- 

lities or properties in different directions [13,46] . We still utilize 

he same area fractions and aspect ratios as Fig. 3 , and just ad-

ust the main-axis orientations of particles to be along the X axis, 

ee Fig. 5 . The effective thermal conductivities is then 343 and 

00 Wm 

−1 K 

−1 in X and Y directions, respectively. Figs. 5 (a1)-(c1) 

how three models containing a random system, a periodic system, 

nd a reference. Figs. 5 (a2)-(c3) show thermal invisibility along 

he horizontal axis and thermal illusion along the vertical axis, 

hich form so-called Janus thermal illusion. We can see almost in- 

istinguishable temperature distributions in backgrounds under X- 

xis E 0 [ Figs. 5 (a2)-(c2)]. Inversely. thermal illusion in Y -axis direc- 

ions has distinct thermal distortions. The temperature feature can 

e mimicked by a uniform anisotropic material [ Fig. 5 (c1)] which 

as same thermal conductivities with the ordered-orientation sys- 

ems in two different directions. The Janus illusion was demon- 

trated in periodic systems in Ref. [13] . Here we realize it with 

oth random and periodic systems. This transferring is based on 

ur theoretical and simulation results that the generalized M-G 

heory can predict the effective thermal conductivities both in 

andom and periodic systems, especially at small inclusive area 

ractions. 
p

6 
Guided by the above design, experimental demonstrations are 

lso performed. We employ copper slab whose thickness d is 

.3 cm and thermal conductivity is 400 Wm 

−1 K 

−1 . Holes are 

tched by laser ablation for realizing different thermal conductiv- 

ty design in specific regions. The etched portion is regarded as 

ir whose thermal conductivity is 0.026 Wm 

−1 K 

−1 . For obtaining 

niform specific backgrounds, we etch periodic circular hole ar- 

ays and control their sizes by classical EMT [22] , as shown in 

igs. 6 (a1)-(a5) and Figs. 7 (a1) and (a2), respectively. Under the 

ondition that heat and cold sources are placed at both sides, the 

eat channel may have three modes simultaneously through the 

lane, which are dominated by thermal conduction, convection, 

nd radiation respectively. Our purpose is focusing on in-plane 

hermal conduction and eliminating the impact of other two out- 

f-plane factors. These three modes can be evaluated quantitatively 

y 

 cond = κe [(T h − T c ) /L ] ∗ d ∗ L, (19a) 

 con v = h [(T h + T c ) / 2 − T amb ] ∗ L 2 , (19b) 

 rad = εσ [((T h + T c ) / 2) 4 − T 4 amb ] ∗ L 2 , (19c) 

here J cond , J con v , and J rad refer to heat flow of conduction, convec- 

ion, and radiation respectively. And κe , h, and ε denote to ther- 

al conductivity, convective coefficient, and emissivity. As we keep 

T h + T c ) / 2 approach to T amb , J cond is at least one order of magni-

ude larger than J con v and J rad . We cover the sample with a plas-

ic film to block the natural convection through air holes and re- 

uce the surface thermal radiation. And we place a foam board 

nder the sample for the same purpose, and insulating direct im- 

act of heat/cold sources as well. The omnidirectional thermal in- 
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Fig. 5. Simulations of Janus thermal illusion. (a1)-(c1) are three models of random-distribution composite, random-distribution composite, and uniform anisotropic materials 

in the center. Sizes of them are same as Fig. 3 . The composites are matrix plus orderly-oriented inclusions whose thermal conductivities are 400 and 0 . 026 Wm 

−1 K −1 

respectively. Background’s thermal conductivities are kept at 343 Wm 

−1 K −1 . Devices show thermal invisibility in X direction [(a2)-(c2)] and illusion in Y direction [(a3)-(c3)]. 

The extracted data at red line positions are from (a2) and (a3) respectively, shown in (d). The reference data in (d) is extracted from (c2) at X = 3 cm position. 

7 
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Fig. 6. Experimental design and results of thermal invisibility. (a1)-(a5) are five experimental samples, corresponding to Figs. 3(a1)-(a5). (b1)-(b5) are simulation results based 

on the structures in (a1)-(a5). (c1)-(c5) are actual experimental results based on (a1)-(a5) under the infrared camera. For matching their effective thermal conductivities, the 

background ( 400 Wm 

−1 K −1 ) is etched and forming air hole (nearly 0 . 026 Wm 

−1 K −1 ) array. 

Fig. 7. Experimental design and results of Janus thermal illusion. (a1)-(a2) are two samples of random and periodic systems, corresponding to Figs. 5(a1) and (a2). (b1)-(b4) 

are simulation results based on the structures in (a1) and (a5). (c1)-(c4) are actual experimental results under the infrared camera. Temperature boundary conditions are 

applied along the X axis [(b1)-(b2)] or Y axis [(b3)-(b4)] respectively. For matching the effective thermal conductivities in (a1), the background ( 400 Wm 

−1 K −1 ) is etched 

and forming air hole (nearly 0 . 026 Wm 

−1 K −1 ) array. 

8 
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isibility and directional Janus thermal illusion devices are thus 

anufactured, which accord with the parameters in the previous 

imulations. We also show the simulation results of these experi- 

ental samples which have elaborate patterns by COMSOL Mutil- 

hyscis [44] , see Figs. 6 (b1)-(b5) and Figs. 7 (b1)-(b4). By compar- 

ng the simulation and experimental temperature distributions in 

igs. 6 (c1)-(c5) and Figs. 7 (c1)-(c4), the proposed thermal invisibil- 

ty and Janus illusion is verified to be valid. It is noted that some 

istortions in white isotherms is because of the random fluctuation 

n random systems. Another probable factors is the random orien- 

ation deviates from the equal probability distribution. Increasing 

uantity of particles will eliminate these errors. 

. Discussion and conclusion 

So far, we have discussed the generalized EMT with analytical 

heories and robust simulations. The results are readily expanded 

o d-dimensional and n -component systems. For further validat- 

ng this statement, we design a three-component thermal invis- 

bility metadevice in a three-dimensional system, Details can be 

een in the Appendix A2. Starting from the Fourier’s law, we give 

 macro-scale framework for calculating effective thermal conduc- 

ivities of geometrically anisotropic heterogeneous composites. We 

hould point out that infinite-matrix approximation is employed 

or eliminating non-local effects, which require the sizes of matrix 

re much larger than particles. Furthermore, while sizes of sys- 

ems are decreased to micron or even nano scale, wave and par- 

icle effects of phonons will dominate in heat transport [48] , and 

hus the generalized EMT becomes invalid. It is also noted that 

nterface thermal resistance (ITR) [49] is not considered in the- 

ry and simulation. However, lattice mismatch or poor mechan- 

cal contact between different materials usually leads to the ITR 

ssue. On the macro scale, the former is usually negligible. While 

he latter can be eliminated by filling the air voids at interfaces 

ith soft matters (for example, polydimethylsiloxane) in experi- 

ents [5] . In terms of our experiment, we adopt air as the low- 

onductivity material by etching holes on copper films. So ITR 

aused by air gaps at interfaces is non-existent. Generally, ITR 

etween two highly-different materials in thermal conductivities 

an be ignored, while it should be taken into account between 

wo approximate-thermal-conductivity materials. Our experimen- 

al demonstrations on thermal invisibility and Janus thermal il- 

usion provide a convinced demonstration in utilizing generaliza- 

ion of the conventional EMT, in which multiple functionalities are 

chieved by adjusting inclusion orientations. A common sense is 

hat the Bruggeman theory is suitable for symmetrical systems, 

hile the M-G theory applies to asymmetrical systems. This can 

e verified by invariance or variance after exchanging the sub- 

cripts in their respective formulas. Here, we try to provide a dif- 

erent viewpoint that interconnection between inclusions can in- 

uce symmetry between inclusions and matrix, which is suitable 

or the Bruggeman theory. Even if the great difference in propor- 

ion between matrix and inclusions, this result is still valid. We 

uggest that interconnection case can be interpreted by the perco- 

ation model, which is implied in the Bruggeman theory. Saying, al- 

hough fillings of inclusions are small, interconnection between in- 

lusions will still have probability to form global connections, just 

ike that of the matrix. On the contrary, large filling fractions (even 

quivalent to the matrix) with non-connected particles never lead 

o percolation, and thus should be treated by the M-G theory. 

Besides, there are three points to be noted: (1) The generalized 

-G theory predicts better in random-distribution systems than in 

eriodic-distribution systems. This is because of the more promi- 

ent interaction between periodically-distributed inclusions, which 

s not considered in the M-G formulations. Under the dilute limit, 

his interaction in both systems is negligible. Essentially, the M-G 
9 
heory is a discrete dipole approximation [47] . For more exact pre- 

iction in periodic-distribution systems, one correctional method 

s employing the Rayleigh approach [50,51] for introducing the in- 

eraction terms into the formulas, which is also called the multi- 

ole method. (2) The depolarization factor of elliptical inclusion is 

ncompletely equivalent to the shape factor if the thermal conduc- 

ivity is anisotropic. So in disordered cases, the anisotropy of ef- 

ective thermal conductivity may be taken into consideration [43] . 

ut we show in Appendix A1 that the difference between them is 

inor enough to be neglected in many actual experimental situ- 

tions. (3) Another common sense is that effective thermal con- 

uctivities can be regulated by adjusting the fraction of inclusions 

n heterogeneous composites. However, with anisotropy in inclu- 

ions’ shape, effective thermal conductivities are changing with as- 

ect ratios, even if the filling fractions are fixed. This feature pro- 

ides another degree of freedom for realizing specific thermal con- 

uctivities in thermal metamaterial design. Furthermore, continu- 

us transformation on thermal conductivities can be achieved with 

he anisotropic morphology’s gradual variation. While this is usu- 

lly realized by filling fractions’ variation on composites or phase 

hange process on phase-changing materials. 

In conclusion, we report thermal metadevices to realize om- 

idirectional invisibility and directional Janus illusion by tun- 

ng the elliptical inclusions’ orientation. The generalized effective 

edium theory is developed for treating this kind of geometri- 

ally anisotropic heterogeneous composite. These results are valid 

ven under extreme conditions and arbitrary shapes, so long as 

he linear steady-state heat transport is satisfied in the system. 

he presented theory and applications may provide solid funda- 

entals in highly freedom-of-control thermal metamaterial design 

ith shape-anisotropy composites. 
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ppendix. A1. Depolarization factors 

The depolarization factor can be approximatively regarded as 

he shape factor, which is only shape-related. For two-dimensional 

ases, we set the lengths of major and minor axis of ellipses to be 

 and b respectively. So g x and g y are written as 

g x = 

ab 
2 

∫ ∞ 

0 
ds 

(a 2 + s ) 
√ 

(a 2 + s )(b 2 + s ) 
, 

g y = 

ab 
2 

∫ ∞ 

0 
ds 

(b 2 + s ) 
√ 

(a 2 + s )(b 2 + s ) 
. 

(A1) 

t is noted that g x + g y = 1 . But for a more accurate description,

t should consider anisotropy in the effective thermal conductivi- 

ies. For the order-orientation case, effective thermal conductivities 

hould be anisotropic. Anisotropy will make depolarization factors 
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Fig. A1. Design and numerical simulations of three-dimensional three-component thermal invisibility. (a) Model design. Two sorts of ellipsoid particles (distinguished by 

different colors) share same sizes, 125 ellipsoid particles are divided into two categories (distinguished by different colors) with identical sizes, among which there are 100 

gray and 25 red particles. Their intrinsic thermal conductivities are 1 and 100 for gray and red particles, respectively. The total volume proportion is 0.1. (b) Numerical 

simulations under 273–333 K temperature boundary conditions along X, Y, and Z axes. (c) Curve graph of temperature data versus position. The line is the pure background 

case by calculation and dots are extracted values of cubic center lines by simulation. 
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ot accurately equivalent to shape factors [43] . So we need to use 

odified depolarization factors by considering anisotropy in effec- 

ive thermal conductivities. Suppose that the x axis is parallel to 

he X axis, depolarization factors g x and g y should be modified as 

g ′ x = 

abκeX 

2 

∫ ∞ 

0 
ds 

(a 2 + sκeX ) 
√ 

(a 2 + sκeX )(b 2 + sκeY ) 
, 

g ′ y = 

abκeY 

2 

∫ ∞ 

0 
ds 

(b 2 + sκeY ) 
√ 

(a 2 + sκeX )(b 2 + sκeY ) 
. 

(A2) 

e re-calculate the M-G plot with the correctional Eqs. (A2) . It is 

ess than 4% between original and revised predictions at the max- 

mum deviation position. Considering the complexity of Eqs. (A2) , 

t is reasonable to simplify it with the shape factor directly in most 

ases. 

For three-dimensional cases, we suppose that l j is the semi-axis 

ength of direction j. Depolarization factors can be calculated as 

 j = 

abc 

2 

∫ ∞ 

0 

ds 

(l 2 
j 
+ s ) 

√ 

(a 2 + s )(b 2 + s )(c 2 + s ) 
(A3) 

here a, b, and c are three components of semi-axis lengths and 

 j = a, b, or c. 

ppendix. A2. Design of three-dimensional three-component 

hermal invisibility metadevice 

Here, we demonstrate a composite of two sorts of ellipsoid par- 

icles embedded in a cubic matrix with random orientation, which 

s a three-dimensional analogy to the designed two-dimensional 

hermal invisibility metadevice. The schematic diagram are shown 
10 
n Fig. A1 (a). The ellipsoid particles are rotational ellipsoids with 

niform a and b as major- and minor-axis lengths severally, and g a 
nd g b are their respective depolarization factors. We set κ1 and 

2 as two intrinsic thermal conductivities of particles and κm 

as 

he thermal conductivity of background. Following Eq. (15) , we 

an write down the effective thermal conductivity formula of this 

odel as 

e _ 3 D = κm 

+ 

α + 2 β + γ + 2 δ

3 − (g a α + 2 g b β + g a γ + 2 g b δ) 
κm 

(A4) 

here 

 

 

 

 

 

 

 

 

 

 

 

α = 

κ1 −κm 

κm + g a (κ1 −κm ) 

β = 

κ1 −κm 

κm + g b (κ1 −κm ) 

γ = 

κ2 −κm 

κm + g a (κ2 −κm ) 

δ = 

κ2 −κm 

κm + g b (κ2 −κm ) 

(A5) 

Figs. A1 (b) and (c) show qualitative and quantitative results of 

he designed metadevice locating at the middle of background. The 

alculated thermal conductivity of Eq. (A4) is endowed to the 

ackground. External temperature are added at three directions 

shown by black arrows) for testing the feature of omnidirection. 

or comparison, we also carry out simulations of the pure matrix 

ase, in which data slightly deviate from the reference. Larger vol- 

me fractions and aspect ratios of inclusions will make the con- 

rast sharper. These results confirm the validity of our theoretical 

ormulas in three-dimensional and multi-component systems. 
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