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Composites have been widely used to realize various functions in thermal metamaterials, thus becoming
important to predict heat transport properties according to geometric structures and component mate-
rials. Based on a first-principles approach, namely, the Rayleigh method, here we develop an analytical
way to calculate temperature-dependent (i.e., nonlinear) thermal conductivities of a composite with cir-
cular inclusions arranged in a periodic rectangular array. We focus on both weak and strong nonlinearity.
As a result, we find that the temperature-dependence (nonlinearity) coefficient of the whole periodic
composite can be larger than that of the nonlinear component inside this composite. Simulation results
from finite element analysis show that the Rayleigh method can be also more accurate than the Maxwell-
Garnett or Bruggeman effective medium approximations. As a model application, we further tailor the
nonlinearity to design a thermal diode, for which heat flux along one direction is much larger than that
along the opposite. This work provides a different theory for handling periodic structure with thermally
responsive thermal conductivities, and it could be useful for designing thermal metamaterials with
diverse properties including rectification.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The efficient utilization of thermal energy is important for
human beings in the modern society. Since the transformation
thermotics theory for heat conduction was proposed in 2008
[1,2], employing all kinds of composites with a specific thermal
conductivity distribution has been a useful method for modulating
the flow of heat, such as thermal cloaks, transparency or illusions
[2–20], and concentrating, bending or rotating of heat flux [4,21–
24]. Meanwhile, researchers have applied different kinds of effec-
tive medium approximations (EMAs) to calculate effective thermal
conductivities of composites, including the well-known Maxwell-
Garnett (M&G) formula [25] and Bruggeman formula [26], and
their extended forms [27–33]. However, temperature-dependent
(i.e., nonlinear) thermal conductivities have seldom been touched
in macroscopic heat transfer although such nonlinear phenomena
are common in the real world and nonlinearity in microscopic heat
conduction has raised much interest [34–38]. From theoretical
analysis to experimental measurements, many materials have
been found to have temperature-dependent thermal conductivities
[39–45]. Besides, based on various kinds of multi-layered or core-
shell structures, nonlinearity (temperature-dependence) can
induce potential applications in macroscopic heat management,
such as switchable cloaks or concentrators [9,46], macroscopic
thermal diodes [9], and energy-free or negative-energy-
consumption maintenance of constant temperatures [47,48]. Nev-
ertheless, other structures with nonlinearity, especially a periodic
array embedded in a host, have not been investigated in the liter-
ature. In particular, such periodic arrays (with nonlinearity) might
be important for real applications, as inspired by the fact that peri-
odic structures (without nonlinearity) have been extensively
investigated in the field of thermocrystals [49].

As an attempt, here we investigate two-dimensional periodic
thermal composites with nonlinear thermal conductivities. We
develop the method proposed by Lord Rayleigh [50] to calculate
the effective nonlinear thermal conductivity of the periodic com-
posites and search for the conditions where nonlinearity enhance-
ment can happen. Here ‘‘nonlinearity enhancement” means that
the nonlinearity coefficient of the whole periodic composite can
be larger than that of the nonlinear component inside this compos-
ite. We start from weak nonlinearity and then investigate strongly
nonlinear cases. We assume that the total thermal conductivity can
be written as a sum of a constant and a temperature-dependent
part. The weak nonlinearity means the constant part is much larger
than the temperature-dependent part for all possible temperatures
while the strongly nonlinear cases means the opposite situation.
Finite-element simulations from commercial software COMSOL
Multiphysics [51] show that the Rayleigh method can be more
accurate than M&G or Bruggeman EMAs for circular inclusions
especially when the concentration of inclusions is high enough.
Finally we design a thermal diode using strong nonlinearity with
both homogeneous material and periodic composites.
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2. Theory

Consider two-dimensional periodic composites where the
inclusions are circular and form a rectangular array, and denote
jj and pj as the thermal conductivity and area fraction of the jth
component. Here, j ¼ i or h is respectively for the inclusion or host.
Obviously we have f i þ f h ¼ 1 where f i and f h denote the area frac-
tion of the inclusion and the host respectively. If we assume that
either the inclusion or host is nonlinear materials with a thermal
conductivity dependent on temperature (T), jj can be written as

jj ¼ jj0 þ vjðT þ TrtÞa ðj ¼ i;hÞ: ð1Þ
Here jj0 is the linear (namely, temperature-independent) part of
jj;vj is the nonlinearity (temperature-dependence) coefficient, Trt

is the reference temperature for measuring nonlinearity and a
should be a real number. From the Debye approximation at low
temperatures, the thermal conductivity of solids is proportional to
T3 (a ¼ 3) while at high temperatures the Eucken’s law tells
a � �1 for many cases [42,43]. Callaway [44] developed a lattice
model and predicted a ¼ �3=2 for normal germanium and a ¼ �2
for single-isotope germanium from 50 K to 100 K, which are in good
accordance with the experimental results. Sometimes a ¼ 1 can be
a good approximation for measurement data of copper and ingot
iron [45].

For simplicity, we consider two cases as shown in Fig. 1: vh ¼ 0
and vi – 0 in Fig. 1(a); vh – 0 and vi ¼ 0 in Fig. 1(b). In principle,
thermal conductivities should vary as the temperature changes
due to different microscopic mechanisms. If the nonlinearity is
weak [namely, vjðT þ TrtÞa � jj0 in Eq. (1)], the effective conduc-
tivity of the composite material can be simply written as

je ¼ je0 þ veðT þ TrtÞa þ O½ðT þ TrtÞ2a�; ð2Þ
where je0 is the linear solution, ve is the effective nonlinearity coef-

ficient, and O½ðT þ TrtÞ2a� denote higher-order terms which are all
smaller than veðT þ TrtÞa. In other words, if we take the term
O½ðT þ TrtÞa� as first-order infinitesimal compared with

j0;O½ðT þ TrtÞ2a� is the second-order infinitesimal. To see the
enhancement or reduction of nonlinearity, we define the nonlinear-
ity coefficient ratio as

c ¼ ve

vj
ð3Þ
Fig. 1. Schematic diagram illustrating two classes of periodic composites: circles de
(temperature-dependent) thermal conductivity. (a) nonlinear inclusions are periodicall
periodically embedded in a nonlinear host. Also, we put a hot source (the red panel) on
where j ¼ i for the first case (i.e., only the inclusions are nonlinear:
vi – 0 and vh ¼ 0) while j ¼ h for the second (namely, only the host
is nonlinear: vh – 0 and vi ¼ 0). It’s obvious that the enhancement
of nonlinearity means c > 1. In addition, the coefficient c can help us
match the required thermal conductivity when using composites to
design thermal metamaterials. For example, thermal cloaks, con-
centrators and rotators have been realized in experiments for linear
conduction using composites. When nonlinear effects exist, the
matching of nonlinearity coefficient should also be considered. In
the following part, we will develop the Rayleighmethod to calculate
c and also use EMAs for the sake of comparison.

2.1. The Rayleigh method

The Rayleigh method [50] is a first-principles approach to the
effective conductivity of periodic composites especially for spheri-
cal and cylindrical inclusions. It uses the Rayleigh identity to obtain
an approximate solution of the Laplace equation and has been suc-
cessfully applied in electricity or electromagnetism to calculate
both linear and nonlinear conductivities [52–58]. Here we follow
the framework of Ref. [58] which studied nonlinear electrical
media, in order for us to extend the Rayleigh method to periodic
nonlinear thermal composites. Here some remarks should be
added. In nonlinear electricity, usually the nonlinear electrical con-
ductivity is directly dependent on the electrical field or the power
of its absolute value while the nonlinear thermal conductivity
directly relies on temperature, rather than its gradient (which is
just mathematically analogous to electric fields in nonlinear elec-
tricity). This fact brings new physics and great difference when
extending from nonlinear electricity to nonlinear thermotics (as
discussed in this work).

To proceed, we assume that two heat sources (see Fig. 1) with
separation L and temperatures TL and TR are respectively put
on the left and right boundary of the composites. First we consider
the linear case and denote the temperature distribution as T0.
The zeroth-order equation for temperature is (note j ¼ i and h for
the inclusion and host, respectively)

r � ðjrTj
0Þ ¼ 0; ð4Þ

which is a homogeneous Laplace equation for Tj
0.

In polar coordinates (q; h), the general solution for Laplace
equation is [59]
note the inclusions and shadow lines represent the material with a nonlinear
y embedded in a linear (temperature-independent) host; (b) linear inclusions are
the left side and a cold source (blue panel) on the right.
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ðA0 þ B0 lnqÞðl0 þ m0hÞ þ
X1
m¼1

ðAmqm

þ Bmq�mÞ lm sinðmhÞ þ mm cosðmhÞ� � ð5Þ
and we set the pole O or the point ð0;0Þ at the center of a selected
cell in the composite. Since we set the temperature gradient along
the x direction, so B0 ¼ m0 ¼ 0. In addition, the temperature should
always has a finite value when q is finite, so we should exclude the
terms q�m for the general solution in the inclusions since the point
q ¼ 0 is in the inclusion, meaning

Ti
0ðq; hÞ ¼ C00 þ

X1
m¼1

C2
0mq

m cosðmhÞ þ C1
0mq

m sinðmhÞ: ð6Þ

In the host, we can also write

Th
0ðq; hÞ ¼ A00 þ

X1
m¼1

ðA2
0mq

m þ B2
0mq

�mÞ cosðmhÞ þ ðA1
0mq

m þ B1
0mq

�mÞ sinðmhÞ:

ð7Þ

To solve out the coefficient sets A00;A
2
0m;A

1
0m;B

1
0m; B

2
0m;C00;C

1
0m and

C2
0m, we resort to both the boundary conditions between the inclu-

sions and host (boundaries denoted as @C)

Ti
0 ¼ Th

0j@C; ð8aÞ

ji
@Ti

0

@q
¼ jh

@Th
0

@q

�����
@C

; ð8bÞ

and the Rayleigh identity [53,54,58]

A00 þ
X1
m¼1

qm½A2
0m cosðmhÞ þ A1

0m sinðmhÞ�

¼
X1
k¼1

X1
m¼1

q�m
k ½B2

0m cosðmhkÞ þ B1
0m sinðmhkÞ� � TL�TR

L x:
ð9Þ

Here hk is the angular coordinate in another polar coordinate sys-
tem whose pole Ok is the center of the k-th cell and we can also
denote qk as the corresponding radial coordinate. If we take xk
and yk as the Cartesian coordinates of the center in the k-th cell,
we can write

qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy� xkÞ2

q
; ð10aÞ

cos hk ¼ ðx� xkÞ=qk: ð10bÞ
Note that the integer index k is positive while the polar coordinate
we use at the beginning in Eq. (5) has its pole in the 0-th cell.

Nowwe turn to Eq. (7). The terms with qm increase with larger q
so they represent the influence on temperature originating from
infinity and inclusions except the one in the 0-th cell. On the other
hand, the terms with q�m should be connected with the inclusion in
the 0-th cell because they increasewith decreasingq and is singular

at q ¼ 0. We can do a further subdivision and write Th
0 as [53,54,58]

Th
0 ¼

X1
m¼1

q�m½B2
0m cosðmhÞ þ B1

0m sinðmhÞ�

þ
X1
k¼1

X1
m¼1

q�m
k ½B2

0m cosðmhkÞ þ B1
0m sinðmhkÞ� � TL�TR

L x:
ð11Þ

Again, the term
P1

m¼1q�m½B2
0m cosðmhÞ þ B1

0m sinðmhÞ� comes from

the inclusion in the 0-th cell and
P1

m¼1q�m
i ½B2

0m cosðmhkÞþ
B1
0m sinðmhkÞ� comes from the k-th (k > 0) and satisfies spatial

periodic-translation invariance. In addition, � TL�TR
L x corresponds

to heat sources at infinity and it would be the exact solution when
there are no inclusions. Because Eq. (7) and Eq. (11) must give the
same result, we can easily get the Rayleigh identity Eq. (9). Also
we can find the Rayleigh identity is a conclusion of superposition
theorem for linear differential equation since the three parts of
Eq. (11) all satisfy the Laplace equation Eq. (4).

As contrast, when only one particle is embedded or the inclu-
sions are very dilute, the boundary condition at infinity is often
used instead of the Rayleigh identity. By partially differentiating
with respect to x in both sides and taking the value at point Q
(which can be arbitrary with Cartesian or polar coordinates being
ðx; yÞ or ðq; hÞ), the Rayleigh identity gives [58]

X1
m¼1

m!qm�nðjhþjiÞ
ðm�nÞ!ðjh�jiÞ ½A

2
0m cosððm� nÞhÞ þ A1

0m sinððm� nÞhÞ�

�
X1
m¼1

ð�1Þn ðmþn�1Þ!
ðm�1Þ! � ½B2

0mW
2
mþnðQÞ þ B1

0mW
1
mþnðQÞ� ¼ � TL�TR

L d1;n

ð12Þ
where

d1;n ¼ 1 ðn ¼ 1Þ
0 ðn – 1Þ

�
; ð13aÞ

W1
l ðQÞ ¼

X1
k¼1

q�l
k sinðlhkÞ; ð13bÞ

W2
l ðQÞ ¼

X1
k¼1

q�l
k cosðlhkÞ: ð13cÞ

By truncating the series expansions [we only need to keep

A2
01;A

2
03;B

2
01 and B2

03 in Eq. (12) for the lowest approximation because
only the odd values ofm can exist when the temperature gradient is
applied along the x direction while the even terms isn’t consistent
with the parity], we can write the approximate solutions in the
selected cell as

Ti
0ðq; hÞ ¼ C00 þ C2

01q cos hþ C2
03q

3 cosð3hÞ ð14Þ
and

Th
0ðq; hÞ ¼ C00 þ A2

01q cos hþ A2
03q

3 cosð3hÞ þ B2
01q

�1 cos h

þ B2
03q

�3 cosð3hÞ; ð15Þ
where [58]

B2
01 ¼ � TL � TR

L
=ð jh þ ji

a2ðjh � jiÞ �
3a6ðW2

4Þ
2ðjh � jiÞ

jh þ ji
Þ; ð16aÞ

B2
03 ¼ � a6W2

4ðjh � jiÞ
jh þ ji

ÞB2
01; ð16bÞ

A2
0m ¼ jh þ ji

a2mðjh � jiÞ B
2
0m; ð16cÞ

C2
0m ¼ 2jh

a2mðjh � jiÞ B
2
0m; ð16dÞ

W2
4 ¼ 3:13085=S2: ð16eÞ

Here a is the radius of a single particle in the unit cell with area S.
The only difference from the electrical counterpart is that C00 is usu-
ally neglected in electricity because a constant term in electrical
potentials should not change the corresponding physical properties.
Fortunately, in the linear case, C00 (though still to be determined by
more conditions) should not influence the result of effective con-
duction, too. Also, W2

4ðQÞ doesn’t depend on the choice of Q and

it’s related to the shape of lattices [53,54]. The coefficients C2
0m in

Eq. (16d) are actually calculated by the boundary condition Eq. (8)
in the 0-th cell so if we take the values of C2

0m into Eq. (14), we
get the solution of for the inclusion in the 0-th cell (with C00 not
determined). For inclusions in k-th cell, because the system is peri-
odic, we can reselect the k-th cell as the new 0-th one.
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The effective thermal conductivity je can be calculated by
[60,61]

je ¼ jh þ ðji � jhÞhrxT0ii=hrxT0i; ð17Þ
where h. . .i means the spatial average and h. . . ii means the integral
over inclusions divided by the whole volume of the composite. It is
easy to see

hrxT0ii ¼ C2
01f i; ð18Þ

f i ¼ pa2=S: ð19Þ
Note thereexists a relationship fromself-consistentfieldmethod [58]

hrxT0i ¼ � 2jh

jh þ je

TL � TR

L
: ð20Þ

Then we can find that the effective thermal conductivity has the
same form as its electrical counterpart in the case of linear conduc-
tion, namely,

je ¼ jh

� ð�b1 þ b1f i þ f 4i Þj2
h � 2ðb1 þ f 4i Þjhji þ ð�b1 � b1f i þ f 4i Þj2

i

ð�b1 � b1f i þ f 4i Þj2
h � 2ðb1 þ f 4i Þjhji þ ð�b1 þ b1f i þ f 4i Þj2

i

;

ð21Þ
where b1 ¼ 3:31248 (which equals to p4

3ðW2
4S

2Þ2
).

However, for the nonlinear case, it could be much more compli-
cated if we still follow the way of calculating electrical conductiv-
ity in Ref. [58], using Rayleigh identity (for nonlinear conduction)
combined with perturbation theory to solve a nonhomogeneous
equation. The difficulty results from the fact that the thermal con-
ductivity depends on the temperature (i.e., potential) while the
electrical conductivity relies on the field (namely, the gradient of
potential). Nevertheless, we can take Eq. (1) into Eq. (21) and use
Taylor series to calculate c through

c ¼ @je

vjðT þ TrtÞa@vj

: ð22Þ

Finally, the expressions of c for the two cases we study are

c ¼
4b1f ij2

h0 b1ðjh0 þ ji0Þ2 þ f 4i ðjh0 � ji0Þ2
h i

b1ðjh0 þ ji0Þðf ijh0 � f iji0 þ jh0 þ ji0Þ � f 4i ðjh0 � ji0Þ2
h i2

ð23Þ
for the first case and

c ¼�b2
1ðf i�1Þðjh0þji0Þ2 ðf iþ1Þj2

h0�2ðf i�1Þjh0ji0þðf iþ1Þj2
i0

� �
b1ðjh0þji0Þðf ijh0� f iji0þjh0þji0Þ� f 4i ðjh0�ji0Þ2
h i2

þ�2b1f
4
i ðjh0�ji0Þ2 2ðf iþ1Þjh0ji0þj2

h0þj2
i0

� �þ f 8i ðjh0�ji0Þ4

b1ðjh0þji0Þðf ijh0� f iji0þjh0þji0Þ� f 4i ðjh0�ji0Þ2
h i2

ð24Þ
for the second case. It can be easily confirmed that c only depends
on area fraction f i and ratio ji0=jh0. In addition, the expressions of c
keep the same for different a and Trt, two additional parameters as
adopted in Eq. (1).

2.2. Effective medium approximation (EMA)

The EMA is another method to calculate the effective properties
of composites. Although EMA is usually seen as an approximation
which applies to various disordered systems, recent works show
that it can work well in some periodic systems [18,62]. Here we
resort to theM&G formula andBruggeman formula respectively [30]
je � jh

je þ jh
¼ f i

ji � jh

ji þ jh
; ð25aÞ

f i
je � ji

je þ ji
þ f h

je � jh

je þ jh
¼ 0: ð25bÞ

Again, take the expression of nonlinear conductivity, named Eq. (1),
into Eq. (25a) and Eq. (25b) respectively. Then, by cutting off the
series expansions of Eq. (2), we obtain

veðT þ TrtÞa ¼ @je

@vi
ð26Þ

where je is a function of jj0; f j and vj. For the first case, only the
inclusion is nonlinear and then the nonlinearity coefficient ratio c
(¼ ve=vi) is given by

c ¼ 4f i

1þ ji0
jh0

þ f i � f i
ji0
jh0

� �2 ð27Þ

from the M&G formula and

c ¼ 1
2

2f i � 1ð Þ 2f i � 2f i
jh0
ji0

� 1þ jh0
ji0

� �
þ 2 jh0

ji0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f i � 2f i

jh0
ji0

� 1þ jh0
ji0

� �2
þ 4 jh0

ji0

r þ 2f i � 1

2
664

3
775 ð28Þ

from the Bruggeman formula. For the second case where only the
host is nonlinear, we can also obtain the nonlinearity coefficient
ratio c (¼ ve=vh) as

c ¼
ð1� f 2i Þ 1þ ji0

jh0

� �2
	 


þ 2ð1� f iÞ2 ji0
jh0

1þ ji0
jh0

þ f i � f i
ji0
jh0

� �2 ð29Þ

from the M&G formula and

c ¼ 1
2

2f i � 1ð Þ 2f i � 2f i
ji0
jh0

� 1þ ji0
jh0

� �
þ 2 ji0

jh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f i � 2f i

ji0
jh0

� 1þ ji0
jh0

� �2
þ 4 ji0

jh0

r � 2f i þ 1

2
664

3
775 ð30Þ

from the Bruggeman formula. Again, the values of a and Trt do not
change the form of c according to our derivation.

2.3. Strong nonlinearity

So far, we have set the nonlinearity to be weak, namely,
vjðT þ TrtÞa � jj0 in Eq. (1). Generally speaking, it is difficult to
establish an analytical theory to calculate the effective conductiv-
ity for all cases especially when linear and nonlinear parts are com-
parable. Strong nonlinearity is another case that we might apply
the Rayleigh method. Below we give a brief discussion.

Thermal conductivities sometimes can vary dramatically for the
change of temperature, such as metals with phase changes (say,
gallium) and shape-memory alloy. For the latter, its effective ther-
mal conductivity changing with temperature can be approximately
described by a logistic function, which has been used to design
thermal metamaterials in [9,47,48]. For electrical composites with
strong nonlinearity (neglecting the linear term), Gao and Li devel-
oped a self-consistent mean-field method to calculate effective
electrical conductivities [63,64]. However, since the nonlinear
thermal conductivity relies on temperature (potential) rather than
its gradient (field), we need to develop a different method. Let us
use the methods above to deal with this problem. Consider the case
that both the host and inclusions have thermal conductivities with
strong nonlinearity vjðT þ TrtÞa � jj0, Eq. (1) can be written as

jj ¼ jj0 þ vjðT þ TrtÞa � vjðT þ TrtÞa ðj ¼ i;hÞ: ð31Þ



G. Dai, J. Huang / International Journal of Heat and Mass Transfer 147 (2020) 118917 5
In this case, the effective thermal conductivity calculated by the
Rayleigh method, M&G formula and Bruggeman formula has the
same form as

je ¼ veðT þ TrtÞa: ð32Þ
Taking Eq. (31) into Eq. (21) and Eq. (25) respectively, we can see
from the Rayleigh method that

ve ¼ vh
ð�b1þb1 f iþf 4i Þv2h�2ðb1þf 4i Þvhviþð�b1�b1 f iþf 4i Þv2i
ð�b1�b1 f iþf 4i Þv2h�2ðb1þf 4i Þvhviþð�b1þb1 f iþf 4i Þv2i

; ð33Þ

Meanwhile, the M&G formula yields

ve ¼ vh
vhð1� f iÞ þ við1þ f iÞ
vhð1þ f iÞ þ við1� f iÞ

; ð34Þ
Fig. 2. The linear part of effective thermal conductivity je0 (or effective linear condcutivi
while ji0 ¼ 10 W/(m�K) and jh0 ¼ 100 W/(m�K) in (b). The light blue, black and red lin
formula and Bruggeman formula. The scatter plot of blue circles shows the finite-eleme

Fig. 3. Nonlinearity coefficient ratio as a function of f i . (a) and (b) corresponds to Fig. 1(a
where only the host is nonlinear. In (a), jh ¼ 10 W=ðm � KÞ and ji ¼ 100 W=ðm �
þ 0:001W=ðm � K2Þ
h i

� T. In (c), jh ¼ 10 W=ðm � KÞ þ 0:001W=ðm � K2Þ
h i

� T and ji ¼ 100
and the Bruggeman formula gives

ve ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2f iÞ2ðvh � viÞ2 þ 4vhvi

q
þ ð1� 2f iÞðvh � viÞ

	 

: ð35Þ

Clearly, we can observe that Eqs. (33)–(35) have the same forms as
the corresponding linear cases if we replace vh and vi by jh and ji,
respectively.

3. Comparing analytical theories with finite-element
simulations

To evaluate our analytic solutions derived from the Rayleigh
method and EMA, we compare them with the simulation results
ty) versus concentration f i . In (a), we take ji0 ¼ 100 W/(m�K) and jh0 ¼ 10 W/(m�K)
es respectively represent the analytical predictions of the Rayleigh method, M&G
nt simulation results.

) where only the inclusions are nonlinear while (c) and (d) corresponds to Fig. 1(b)
KÞ þ 0:01W=ðm � K2Þ

h i
� T. In (b), jh ¼ 100 W=ðm � KÞ and ji ¼ 10 W=ðm � KÞ

W=ðm � KÞ. In (d), jh ¼ 100 W=ðm � KÞ þ 0:01W=ðm � K2Þ
h i

� T and ji ¼ 10 W=ðm � KÞ.
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obtained from the commercial finite-element method software
COMSOL Multiphysics. In our model, the size of the whole compos-
ite material is 20 cm � 20 cm and that of each unit cell is 1 cm �
1 cm. In addition, the two heat sources put on boundaries are set
as TL ¼ 313 K and TR ¼ 273 K. Since the shape of inclusions is cir-
cle, there is an upper limit of area fraction f i < p=4 if no overlap-
ping exists. Also, without loss of generality, we take a ¼ 1 and
Trt ¼ 0 K if not stated otherwise.

When considering weak nonlinearity, Fig. 2 and Fig. 3 respec-
tively show the effective linear thermal conductivity je0 and non-
linearity coefficient ratio c for two different ji0=jh0 ratios. First, we
look at the results in Fig. 2, which shows the effective linear ther-
mal conductivity je0 as a function of f i. For Fig. 2(a), we take
ji0=jh0 ¼ 10 while ji0=jh0 ¼ 0:1 for Fig. 2(b). We can see je0 is
always between the values of ji0 and jh0, and the Rayleigh method
appears to be more accurate than the two EMAs (M&G formula and
Bruggeman formula), especially for large values of f i. This is
because the two EMAs are derived from the assumption that the
inclusions are randomly distributed and the multipolar interac-
tions (beyond dipolar interactions) between inclusions are
Fig. 4. Effective nonlinearity coefficient ve versus f i for strong nonlinearity. Parameters: (
W=ðm � K2Þ.

Fig. 5. Design schematics of two thermal diode expected to have the same rectification r
structures. Two kinds of inclusions, denoted by red and purple circles, are embedded in
temperature TL on the left (the green panel) and another with TR on the right (the yellow
we set jA;host ¼ 0:5ðT=100Þ2 ½W=ðm � K3Þ�;jA;inclusion ¼ 2ðT=100Þ2 ½W=ðm � K3Þ� and f i;A
½W � K=m�;jB;inclusion ¼ 0:2ð500=TÞ2 ½W � K=m� and f i;B ¼ 12:73%.
neglected. However, the Rayleigh method consider such interac-
tions within periodic structures by taking the Rayleigh identity
as part of the boundary conditions.

In Fig. 3, (a,b) show the nonlinearity coefficient ratio c for nonlin-
ear inclusions embedded in a linear host [the first case illustrated by
Fig. 1(a)]while (c,d) show the results for linear inclusions embedded
in a nonlinear host [the second case illustrated by Fig. 1(b)]. The lin-
ear part of effective conductivity for Fig. 3(a,c) (taking ji0=jh0 ¼ 10)
can be found in Fig. 3(a,c) and that for Fig. 3(b,d) (taking
ji0=jh0 ¼ 0:1) can be found in Fig. 2(b). Again, we can find that the
Rayleigh method provides better predictions than the two EMAs
(especially for large values of f i). What’s more, different from com-
posites with random-embedded inclusions [66], nonlinearity
enhancement (corresponding to c > 1) can not only happen for
vi ¼ 0;vh > 0 and ji0=jh0 > 1 [see Fig. 3(c)], but also for
vi > 0;vh ¼ 0 and ji0=jh0 < 1 [see Fig. 3(b)], as long as f i is large
enough.

Also, for strong nonlinearity, we plot Fig. 4. We set vi=vh ¼ 5 in
Fig. 4 and vi=vh ¼ 1=5 in Fig. 4(b). We can see that, like the weakly
linear case, the Rayleigh method gives the most accurate predic-
a) vi ¼ 0:5W=ðm � K2Þ and vh ¼ 0:1W=ðm � K2Þ; (b) vi ¼ 0:1W=ðm � K2Þ and vh ¼ 0:5

atio. In (a), we use two homogeneous materials A and B. In (b), we use two periodic
to two host materials respectively. In both of (a) and (b), we put heat source with
panel). In (a), we set jA ¼ ðT=100Þ2 ½W=ðm � K3Þ� and jB ¼ ð500=TÞ2 ½W � K=m�. In (b),
¼ 55:00% in the left part. For the right part, we set jB;host ¼ 1:2ð500=TÞ2



G. Dai, J. Huang / International Journal of Heat and Mass Transfer 147 (2020) 118917 7
tions. In addition, ve increases as f i increases in Fig. 4(a) while the
behavior is opposite in Fig. 4(b), just as what effective linear con-
ductivities do in Fig. 2.

It is known that strong nonlinearity and asymmetry can be a
useful tool to achieve rectification effect [34,9,65] from micro to
macro scales. Here, considering Fourier’s law for macroscopic heat
conduction, we design a toy thermal diode using materials satisfy-
ing Eq. (31). We follow the work in Ref [65], utilizing two materials
(namely, A and B) whose conductivities have different power-law-
exponent relationships a with temperature. The schematic design
is shown in Fig. 5(a), which is a two-segment bar with material A
on the left part and B on the right. Each material occupies a
0.1 m � 0.1 m square area. Again, temperatures TL; TR are set on
the left and right boundaries respectively. To generate the rectifica-

tion effect, we set jA ¼ ðT=100Þ2 ½W=ðm � K3Þ� and jB ¼ ð500=TÞ2
½W � K=m�. Also, to check the Rayleigh method in a more specific
case, we use periodic structure to match jA;jB. As illustrated in
Fig. 5(b), we use four materials in another diode which has the
same size and boundary conditions as the one in Fig. 5(a). In its left
part, corresponding to material A, we set the conductivity of the

host as jA;host ¼ 0:5ðT=100Þ2 ½W=ðm � K3Þ�. The conductivity of the

inclusion is jA;inclusion ¼ 2ðT=100Þ2 ½W=ðm � K3Þ� and the area fraction
Fig. 6. (a1-a2) show temperature distributions and heat flux for the design corresponding
left end is set at 873 K [or 273 K] and the right 273 K [or 873 K]. The white lines are iso
arrows denotes the magnitude of heat flux.
of the inclusions f i;A calculated by the Rayleigh method is 55.00%.

Also, for the right part, we set jB;host ¼ 1:2ð500=TÞ2
½W � K=m�;jB;inclusion ¼ 0:2ð500=TÞ2 ½W � K=m� and area fraction f i;B
is 12.73%. We hope the two diodes in Fig. 5 can have the same rec-
tification ratio w defined by w ¼j Jþ � J� j =ðJþ þ J�Þ. Here Jþ (or J�)
denotes the heat flux when heat flows from left to right (or from
right to left) in the diode.

Setting cold/hot source with a temperature at 273 K/873 K,
Fig. 6 illustrates the temperature distribution and heat flux of the
two diodes. Fig. 6(a1-a2) is for the diode using homogeneous mate-
rials corresponding to Fig. 6 and Fig. 6(b1-b2) is for its counterparts
using periodic composites corresponding to Fig. 5(b). In Fig. 6(a1)
and (b1), TL ¼ 873 K and TR ¼ 273 K, while in Fig. 6(a2) and (b2),
TL ¼ 273 K and TR ¼ 873 K. The white lines are isotherms and we
can see the temperature distributions in Fig. 6(a1) and (b1) are
very close. So are the temperature distributions in Fig. 6(a2) and
(b2). The black arrows in Fig. 6 show the directions of heat flux
and their lengths are proportional to the magnitudes of heat flux.
Also, we can see the heat flow (arrow) in (a1)/(b1) is larger than
that in (a2)/(b2), thus yielding the behavior of rectification. The
rectification ratio for (a1) and (a2) is 13.26% and 13.28% for (b1)
and (b2). We can find they are almost the same since the periodic
to Fig. 5 and (b1-b2) show those for Fig. 5(b). In (a1) and (b1) [or (a2) and (b2)], the
therms. The black arrows represent the direction of heat flux, and the length of the
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composites should have equivalent effective conductivities as
material A and B. The heat flows, for example, in (a1) and (b1) look
not the same because (b1) only draws the flow in the host due to
some settings in COMSOL Multiphysics. However, when consider-
ing the total flux in both inclusions and host, (b1) (or (a1)) has
about the same heat flow as (b2) (or (a2)), which is in consistence
with the conclusion on rectification ratio.
4. Discussion and conclusion

Without loss of generality, we have adopted the square lattice
in our thermal composite. In fact, the Rayleigh method can still
work for other lattices, such as the hexagonal lattice. The only dif-
ference is that the coefficient in Eq. (16e) should be numerically
recalculated by using Eq. (13c) according to the specific lattice in
use [67].

We can see from Figs. 2–4 that M&G formula can also work well
when f i is not large. Here we want to give a brief discuss on the
relationship of M&G formula and the Rayleigh method. The M&G
formula comes from a condition that [30]

hrxT
i
0i ¼

2jh

jh þ ji
hrxT

h
0i: ð36Þ

Here, for simplicity, we don’t distinguish jj from jj0 ðj ¼ i; hÞ. Since
the outer temperature gradient is put along the x direction, the

approximation hrxT
h
0i � � TL�TR

L is reasonable in M&G theory. If we
consider inclusions with conductivity je, we can find Eq. (36) turns
similar to Eq. (20). Also, we can find in M&G theory,

hrxT
i
0i ¼ � 2jh

jh þ ji

TL � TR

L
; ð37Þ

while in Rayleigh method, Eq. (18) tells

hrxT
i
0i ¼ � 2jhðjh þ jhÞ

ðjh þ jiÞ2 � 0:301888f 4i ðjh � jiÞ2
TL � TR

L
: ð38Þ

Then we can find the two expressions above for hrxT
i
0i should

become the same if 0:301888f 4i ðjh � jiÞ2=ðjh þ jiÞ2 can be
neglected. Area fraction f i plays the main role here as it has a
fourth-power relationship and can be much smaller than 1 when
itself is not big. This can explain why M$G formula can also give
nice predictions in Figs. 2–4 within a certain range. Nevertheless,
from the point of view of the entire range of f i, predictions from
the Rayleigh method can be more accurate and have a wider and
more general applicability for periodic composites, as confirmed
by the finite-element simulations.

In summary, we have employed the Rayleigh method to inves-
tigate the nonlinear thermal conductivity in composites with peri-
odic structures and revealed the conditions for nonlinearity
enhancement. Also, we have investigated both weak and strong
nonlinearity. In this work, we have considered two-dimensional
composites with circular inclusions and this method can be
extended to three-dimensional cases whose inclusions may be
cylindrical, spherical or even elliptical-cylindrical, based on the
results of their linear counterparts by the Rayleigh method [55–
57]. This method is helpful to make intricate and precise designs
of thermal metamaterials by tailoring nonlinear conductivities,
such as thermal diodes, and it is also useful for other areas includ-
ing nonlinear electromagnetic periodic composites.
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