
Thermal Illusion of Porous Media with Convection-Diffusion Process: Transparency, 

Concentrating, and Cloaking

Thermal convection-diffusion plays a crucial role in transferring heat energy in the nature, and hence its effective manipulation is of great 

significance. Although the transformation theory provides a possible approach, three severe problems still restrict practical applications. That 

is, the parameters as required by the transformation theory are anisotropic, inhomogeneous, and even singular, thus challenging the 

fabrications. To solve these problems, here we propose a scheme for realizing thermal illusion (including transparency, concentrating, and 

cloaking) of porous media with convection-diffusion process, which is governed by Darcy's law and Fourier's law. By designing two key 

parameters (i.e., thermal conductivity and permeability) of a shell, we can realize thermal transparency and remove the requirements of 

anisotropy, inhomogeneity, and singularity. The scheme can also help to realize thermal concentrating or cloaking by designing an anisotropic 

shell without the need of inhomogeneous and singular parameters. All these theoretical analyses are confirmed by finite-element simulations. 

This work provides an illusion scheme for manipulating thermal convection-diffusion with practical parameters, and offers a guidance to 

fabricate these metamaterials experimentally. Our results can also be extended to other diffusive fields, such as mass diffusion.
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1. Introduction
Heat flow exists almost everywhere in the nature, and hence its 

effective management is of particular significance. Fortunately, the past 

years have witnessed the development of manipulating heat conduction 

at the nanoscale. Many computational methods have been developed, 

such as first-principles Boltzmann transport equation, molecular 

dynamics, non-equilibrium Green's function, and numerical solution of 
1phonon Boltzmann transport equation.  These methods provide a 

promising approach to manipulating heat flow.

Meanwhile, researchers are also devoted to understanding and 
2controlling heat flow at the macroscale. In 2008, Fan et al.  proposed 

thermal cloaking based on the approach of coordinate transformation. 

Heat flow can be guided to keep off an “invisible” region at steady 

states without distorting the temperature distribution of the background. 

From then on, many thermal metamaterials have been theoretically 

designed and experimentally realized in heat conduction, such as 
3-9 10-14extensional thermal cloaking,  thermal concentrating,  thermal 

15-17 18-25transparency,  thermal camouflage/illusion,  and even thermally 
26responsive metamaterials.  When considering the coupling between 

thermal convection and diffusion (conduction), the transformation 
27,28approach also works. Some recent work  established the 

transformation theory for thermal convection-diffusion process in 

porous media. Thus, the theoretical treatment based on the coordinate 

transformation (called transformation thermotics) has become a useful 

method for manipulating macroscopic heat flow at will.

However, most metamaterials designed by transformation 

thermotics have inevitably anisotropic, inhomogeneous, and even 

singular parameters, thus challenging the fabrications. To solve these 

problems in thermal diffusion, people use effective medium theories and 
4, 5, 29multilayered composite structures to realize the desired functions.  

Unfortunately, there is not an appropriate theory for handling thermal 

convection-diffusion so far. Thus, it becomes urgent to establish a 

theory to simplify the complex parameters given by transformation 

thermotics.
15For this purpose, we refer to the concept of neutral inclusion,  and 

extend it to thermal convection-diffusion of microfluidics in porous 

media. We consider two physical quantities (i.e., thermal conductivity 

and permeability) and calculate their respective effective values. By 

designing these two key parameters, we realize three types of thermal 

illusion (including transparency, concentrating, and cloaking). 

Concretely speaking, thermal transparency is to construct a core-shell 

structure in order not to disturb the temperature, velocity, and heat flux 

distributions in the background. Especially, it can remove the 

requirements of anisotropy, inhomogeneity, and singularity. On the same 

footing, for achieving thermal concentrating or cloaking, we design an 

anisotropic shell with no need to adopt inhomogeneous and singular 

parameters. Since transparency, concentrating, and cloaking do not 

disturb the temperature, velocity, and heat flux distributions in the 

background, we collectively call them thermal illusion for convenience 

in this work. Finally, we perform finite-element simulations with 
30software COMSOL 5.4  to confirm our theory.

© Engineered Science Publisher LLC 2019 ES Energy Environ., 2019, 6, 45–50 | 45

http://doi.org/10.30919/esee8c328
http://doi.org/10.30919/esee8c328


2where C =     denotes the anisotropy of the shell, and f = (r /r )  1 2τ  / τθθ rr 

denotes the core fraction. We set = to ensure that the heat flux and τ τe 3 

velocity distributions in the background (region III) behave as if there 

were not a core-shell structure in the center.

3. Results
In this section, we present finite-element simulations to validate our 

theoretical calculations. Because of the same equation form of and , κ σ

we can easily conclude that the effective permeability should have the 

same mathematical expression as the effective thermal conductivity. We 

theoretically derive the conditions of thermal convection-diffusion 

transparency in two dimensions, say, . Thermal τ (κ  or σ ) = τ (κ  or σ ) e e e 3 3 3

transparency requires that the temperature, velocity, and heat flux 

distributions in region III exhibit the same profile as if there was not a 

core-shell structure in the center. We validate the above theory by using 

the templates of heat transfer in porous media and Darcy's law in 

COMSOL. Without loss of generality, we take the pressure field parallel 

or perpendicular to the temperature field; see Fig. 1.

-5Fig. 1 Schematic diagrams of thermal illusion. The scale of the system is 10  m. (a) The background velocity is along the y direction, as described by 

the black flow lines. (b) The background velocity is along the x direction. Region I (r<r ) is composed of isotropic porous media, region II (r <r<r ) is 1 1 2

composed of isotropic media for thermal transparency, and anisotropic media for thermal concentrating or cloaking, and region III (r >r ) is composed of 2

isotropic background porous media. For thermal illusion in porous media, the black lines in region III with the core-shell structure should be undistorted.

We also consider one type of fluid which means that dynamic viscosity  
     is constant. Then, Eqs. (4) and (5) can be expressed as

2. Theoretical methods
We consider a passive thermal convection-diffusion process in porous 

media with an incompressible fluid and neglect the viscous dissipation 

term. Then, the thermal convection-diffusion equation can be expressed 
27as

(1)

where     ,        , and      are, respectively, the density, heat capacity, and 

velocity of the fluid at constant pressure, and T represents the 

temperature when the porous media and the fluid reach equilibrium. In 

addition,   , which denotes the average thermal conductivity tensor of 

the porous media and the fluid, is given by                                           ,

where   is the porosity of the media.    and    are the thermal 

conductivity tensors of the solid porous media and fluid, respectively. 

The left part of Eq. (1) is the term of thermal convection. Although Eq. 

(1) seems that the permeability and thermal conductivity are coupled 

together, we have to claim that they are intrinsic properties of materials. 

In other words, Eq. (1) just describes the thermodynamic state of fluids 

after we preset the thermal conductivity and permeability. Thus, we can 

consider thermal diffusion and thermal convection independently. If the 

fluid is laminar with very slow speed, the velocity   is determined by   

Darcy's law,

(2)

where    and    denote the permeability tensor and dynamic viscosity, 

respectively.    denotes pressure. Eq. (2) is valid under the condition that 

both Re (Reynolds number) and    are low enough. The conductive flux     

is given by Fourier's law,

(3)

For simplicity, we consider the passive states, thus yielding

(4)

(5)

(6)

(7)

Clearly, Eqs. (6) and (7) have the same mathematical form. Thus, the 

effective medium theory can handle both thermal conductivity and 

permeability. We can use  to unify the representation of and .τ κ σ
Our aim is to remove the requirements of anisotropic, 

inhomogeneous, and singular parameters. Therefore, we refer to the 
 15concept of neutral inclusion.  This concept gives us a way to calculate 

the effective thermal conductivity of a core-shell structure. Then, we 

need to calculate the effective permeability of the same core-shell 

structure. As shown in Fig. 1, we set the core to be isotropic with 

parameter , the shell to be anisotropic with parameter = diag(τ τ τ = τ ) 1 2 rr  θθ

(the shell becomes isotropic when ), and the background to be τ = τrr  θθ 

isotropic with parameter . Then, the effective parameter of the core-τ τ3 e 

shell structure can be calculated as

(8)τ Cτ
Cτ

Cτ

Cτ

Cτ

τ

τ

τ

τ
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In all simulations, we take and . The fluid in Δp = 400 Pa ΔT = 40 K
3porous media is set as water with kg/m , C , p, f  

3 3 -1 -1ρ = 10  = 4.2 × 10  J·kg Kf   

the dynamic viscosity Pa s, and . The porosity -3 -1 -1η = 10  · κ  = 0.6 Wm Kf
-5of the whole region is . The size parameters are r  = 10  m and 1ϕ = 0.9

-5 r  = 10 m. The average thermal conductivity tensors are set to be 2 κ = 6 1 
-1 -1 -1 -1Wm K κ Wm K κ = κ2 З  e, = diag(4,4) , and  given by Eq. (8). The thermal 

conductivity tensor of the porous media can be calculated as = (  - κ  κ  s
-12 2ϕκ ϕ σ  = 5×10 m σ1)/(1- ) The permeability tensors are set to be ,  = diag(2, f 2

-122)  (the magnitude 10  is common in nature), and   by -12 2×10  m  σ = σ3  e

Eq. (8). In all these cases, we set Reynolds numbers Re = r  2 ρ υ/η < 1f 

(the maximum value is 0.64) and      r    , so Darcy's law is valid.2σ

The simulation results are shown in Figs. 2 and 3. The pressure 

field in Fig. 2 is along the y direction, and the second row is a reference 

without the core-shell structure. Comparing the first and the second 

rows, we find the distributions of temperature, velocity, and heat flux 

are the same in region III, as if there were not a device in the 

background. These results validate the above theory of thermal 

transparency. The conclusion is the same when the pressure field is 

parallel to the temperature field. Besides, Figs. 2 (c) and 2(f) show that 

the total heat flux is curved. This is because the direction of convection 

flux is perpendicular to that of the conduction flux. The vertical velocity 

field introduced by thermal convection just gives the total heat flux a 

vertical component. It has no effect on the horizontal heat flux field and 

temperature field, so it does not affect the temperature distribution, but 

affects the distribution of heat flux. What's more, the changes of 

Fig. 2 Simulation results of thermal transparency when the velocity is along the y direction. (a) is the 

temperature distribution where the white lines are isotherms. (b) shows the distribution of Darcy's velocity 

whose direction is shown by the arrow direction. (c) describes the distribution of the total heat flux whose 

direction is shown by the arrow direction. Since the convection flux is vertical to the conduction flux, the total 

heat flux is curved. Different color maps represent different values, which is shown below each figure. (d)-(f) 

are the results of pure background for comparison with (a)-(c).

temperature difference and pressure difference only cause different heat 

flow field and velocity field. The effects of thermal illusion will not be 

affected as long as the permeability and thermal conductivity satisfy Eq. 

(8). 
-12Since we take the permeability at the order of magnitude 10 , the 

heat flux caused by convection may be too small to have an effect on 

the distributions of temperature, velocity, and heat flux. We only change 

the permeability of region III in Fig. 2. If the permeability of the 

background is not equal to the value calculated by Eq. (8), the function 

of thermal transparency will disappear; see Fig. 4. Thus, the results of 

Fig. 4 also validate our theory. Then, we can conclude that only when 

the parameters (thermal conductivity and permeability) of the three 

regions satisfy Eq. (8), can the thermal transparency appear for creeping 

flow in porous media. Therefore, we realize thermal convection-

diffusion transparency with isotropic, homogeneous and nonsingular 

materials.

In addition, we can also realize thermal concentrating or cloaking 

by considering a shell with constant anisotropic parameters. τ  and τ  rr θθ

represent the ability of heat flow to propagate radially and tangentially, 

respectively. Thermal concentrating for thermal convection-diffusion 

can be used to enhance the temperature gradient of a target area. 

Therefore, we set τ  > τ to realize the concentrating effect. The rr θθ 

simulation results are shown in Fig. 5, and heat flow does concentrate at 

the center region.

With the same thoughts, if we set τ   τ , we can realize an rr θθ  
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Fig. 3 Simulation results of thermal transparency when the velocity is along the x direction.Other parameters are the same as those in Fig. 2.

Fig. 4 Simulation results when the permeabilities of the background and core-shell structure mismatch. (a) The distribution of velocity along the y 

direction in region III is nonuniform, indicating that the core-shell structure is visible when detecting region III and the function of thermal transparency 

disappears. (b) is the same as (a) except for that the background velocity is along the x direction.
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Fig. 5 Simulation results of thermal concentrating. The background velocity of the first and the second rows are along the y and x directions, 

respectively. (a)-(c)[or (d)-(f)], respectively, describe the distributions of temperature, velocity and heat flux. The material and size parameters of the 
-12 2 -12 2background are the same as those in Fig. 2. , = diag(40,0.4) , and given by Eq. (8). = 10 m , = diag(10,0.1)×10  m  -1 -1 -1 -1κ = 1 Wm K κ Wm K κ = κ  σ  σ1 2 3 e 1 2 

and  given by Eq. (8).σ =σ3  e

Fig. 6 Simulation results of thermal cloaking. The background velocity of the first and the second rows are along the y and x directions, respectively. (a)-

(c)[or (d)-(f)], respectively, describe the distributions of temperature, velocity and heat flux. The material and size parameters of the background are the 
-12 2 -12 2same as those in Fig. 2. , = diag(0.4,40) , and given by Eq. (8). = 10 m , = diag(0.1,10)×10  m  and  given by -1 -1 -1 -1κ = 1 Wm K κ Wm K κ = κ  σ  σ σ = σ1 2 3 e 1 2 3  e

Eq. (8).
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appropriate thermal cloak. When τ  exactly reaches zero, an exact cloak rr

can be realized. Although an infinitesimal value of τ  still makes the rr

heat flow enter into the target area (region I), it is small enough which 

can be neglected. Thus, the cloaking effect is also valid. The simulation 

results are shown in Fig. 6. We find that almost no heat flows into the 

central region.

According to the effective medium theory, as long as the 

permeability and thermal conductivity satisfy Eq. (8), the thermal 

illusion effect will come to appear. In fact, it's not exactly the case. In 

region II, the anisotropy ratio of the thermal conductivity and 

permeability should be the same for the thermal transparency effect to 

occur strictly. It means that = . This requirement is in θθ θθκ /κ σ /σrr rr
27accordance with the transformation theory  because the designed 

thermal conductivity and permeability should realize the same degree of 

effect.

Moreover, since we control the velocity at the order of magnitude 
-310 , the Reynolds number of each simulation is smaller than 1 (the 

maximum value is 0.64) in this work. This ensures that Darcy's law is 

valid and the flow is laminar. Therefore, our theory and parameter 

settings are reasonable and adopted for creeping flow in porous media. 

When Reynolds number is large, we should consider the Brinkman-
31-33 Stokes flow or turbulent flow. We should also notice that our work 

may be invalid when Fourier's law breaks down at the nanometer scale. 

We only discuss the steady results as shown in Figs. 2-6. The proposed 

theory can also be extended to the unsteady states. The dominant 

equation is ∂T / ∂t + f sρC ρ C (υ·  T) =  ·(κ·  T)   where ρC = (1- ϕ)(ρ C )  p,f s

+ ϕ(ρ C). Here, ρ  and Cf s are respectively the density and the specific f s

heat of solid material in porous media. Compared with steady states, the 

density and specific heat should be considered accordingly.

4. Discussion and conclusion
In summary, we have proposed a scheme to realize thermal illusion 

(including transparency, concentrating, and cloaking) for creeping flow 

in porous media. Such scheme of thermal transparency overcomes the 

limitations of anisotropy, inhomogeneity, and singularity. This scheme 

also helps to realize thermal concentrating and cloaking with only 

constant anisotropic parameters (namely, τ > τ for concentrating and  τrr  θθ rr

τ for cloaking). All these three functions do not disturb the    θθ 

temperature, velocity, and heat flux distributions in the background.

Furthermore, we give a new insight on thermal convection-

diffusion process. These two processes are strongly coupled in porous 

media with creeping flow which presents a huge challenge for controlling 

the heat flow. However, we decouple thermal conductivity and 

permeability by considering two independent passive processes in this 

research, and find that the dominant equations have the same 

mathematical form. Thus, the effective medium theory can handle both 

thermal conductivity and permeability, and it is of great significance for 

practical applications. For example, we can design thermal metamaterials 

for thermal convection-conduction in porous media just like what we do 

in thermal conduction to realize desired functions (such as cloaks for 

hiding objects, concentrators for collecting heat energy, or camouflage for 

misleading infrared detection). For laboratory experiments, we consider 

the micro-nano processing technology due to the limitation of system size. 

We can fabricate porous microfluidic devices by designing patterned 

porous silicon nitride masters with polydimethylsiloxane(PDMS). Since 

the designed parameters of the shell are anisotropic for cloak and 

concentrator, we consider that the shell consists of many micropillars in 

porous media. PDMS can be made into micropillars and incorporated 

into porous silicon nitride masters to regulate permeability and thermal 

34conductivity. A recent article gives us a good idea.  We can decompose 

the shell into many units. Every unit is a micropillar incorporated into 

the porous media. By designing the permeability and thermal 

conductivity of every unit and combining all of them, we can realize the 

desired anisotropy of the shell.

This work provides a direct guidance to experimentally fabricate 

metamaterials for thermal convection-diffusion, and further works can 

be expected. For example, it can promote the research on transient 

thermal convection-diffusion and experimental realizations with the 

effective medium theory.
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