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Abstract – Magnetic metamaterials have attracted intensive attention for their extraordinary
ability to control magnetic fields. However, almost all magnetic metamaterials exhibit no intel-
ligence. This situation largely results from the fact that permeability, as an inherent property,
cannot adapt to nearby changes. Inspired by the chameleon behavior, here we design two types
of magnetostatic chameleonlike metashells in two dimensions, which are featured by their adap-
tive responses to inside objects. One type is based on the anisotropic monolayer scheme, and
the other is based on the isotropic bilayer scheme. We derive the requirements of magnetostatic
chameleonlike metashells by making the effective permeabilities of the chameleonlike metashells
always equal to the permeabilities of inside objects. In both schemes, negative permeabilities are
required. Theoretical derivations are validated by finite-element simulations. We further extend
the anisotropic monolayer scheme to three dimensions. Magnetostatic chameleonlike metashells
can act as a type of all-purpose materials to work under different requirements of permeabilities.
This work provides intelligence to permeability, and further intelligent metamaterials beyond
chameleonlike metashells can be expected.

Copyright c© EPLA, 2019

Introduction. – Magnetic metamaterials [1] have
aroused great research interest, such as negative re-
fraction [2,3], magnetic cloak [4–13], magnetic concen-
trator [14–16], illusion/camouflage [17–22], long-distance
transfer and routing [23], magnetic wormhole [24], etc.
However, these existing studies on magnetic metamateri-
als rarely involve intelligence. In other words, once a meta-
material is designed, the function is therewith determined.
This situation largely results from the fact that permeabil-
ity, as an inherent material parameter, lacks adaptivity. In
fact, adaptivity is of great significance for practical appli-
cations. For example, if the permeability of a magnetic
sensor possesses adaptivity, it can always be invisible un-
der different conditions. Therefore, it is urgent to uncover
the physics of material adaptivity.

For this purpose, here we propose the concept of mag-
netostatic chameleonlike metashells which can adaptively
change their effective permeabilities according to inside

(a)E-mail: jphuang@fudan.edu.cn

objects. Such behavior is inspired by the natural phe-
nomenon that chameleons can adaptively change their
colors according to nearby environments. Concretely
speaking, when the designed chameleonlike metashell
(fig. 1(a)) is confronted with different inside objects, it can
adaptively change its effective permeability to be the same
as the permeability of the inside object (the permeability
of the matrix is set to be the same as that of the object);
see figs. 1(b) and (c). Such behavior is counterintuitive
because for a normal shell (fig. 1(d)) it is impossible to
exhibit adaptivity; see figs. 1(e) and (f). Note that it is
just for convenience to set the matrix property to be the
same as the object property. In fact, whatever the matrix
property is, the chameleonlike metashell can always imi-
tate the object property and possess the same property as
the inside object.

To uncover the physics of magnetostatic chameleonlike
metashells, we calculate the effective permeabilities of
the core-shell structure and the core-shell-shell structure,
which respectively serve as the anisotropic monolayer
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Fig. 1: Schematic diagrams of (a)–(c) chameleonlike metashells
vs. (d)–(f) normal shells. Different colors represent different
permeabilities.

scheme and the isotropic bilayer scheme. We find some
special relations to make the effective permeabilities of
chameleonlike metashells be the same as the permeabilities
of inside objects. In what follows, we will perform theoret-
ical derivation and finite-element simulations to validate
the proposed schemes. To be mentioned, “permeability”
in this work represents “relative permeability”, say regard-
ing vacuum permeability as 1.

Theory for chameleonlike metashells. – The key
to magnetostatic chameleonlike metashells is their adap-
tive permeabilities according to inside objects. Therefore,
we will start from deriving the effective permeabilities
in two dimensions to uncover the physics of magneto-
static chameleonlike metashells. For this realization, we
will firstly consider an anisotropic monolayer scheme; see
fig. 2(a). Due to the fact that anisotropy is not that
easy to obtain in experiments, we will further discuss an
isotropic bilayer scheme; see fig. 2(c), to simplify the pa-
rameters. In both schemes, negative permeabilities are
required. Although negative permeabilities do not exist
in nature, they can be realized with manually fabricated
structures [25–29]. Especially in a recent work [29], nega-
tive permeabilities are experimentally obtained by an ap-
propriately tailored set of currents. Concretely speaking,
surface currents are externally applied on both the inner

Fig. 2: Schematic diagrams of (a) an anisotropic monolayer
scheme and (c) an isotropic bilayer scheme. (b) and (d) are
theoretical results with respect to eqs. (4) and (7).

and outer surfaces of the shell to make the shell possess
negative permeability. Similar approach may also be ap-
plied in this work to realize negative permeabilities.

Anisotropic monolayer scheme. We consider the core-
shell structure in fig. 2(a). We set the core with ra-
dius rc and scalar permeability μc, and the shell with
radius rs and tensorial permeability μs = diag (μrr, μθθ)
in cylindrical coordinates (r, θ). It should be noted that
μθθ/μrr < 0. We can derive the effective permeability of
the core-shell structure μe as

μe = mμrr

μc + mμrr tan
(
m ln

√
p
)

mμrr − μc tan
(
m ln

√
p
) , (1)

where m =
√
−μθθ/μrr, and p = (rc/rs)

2 is the core
fraction. Detailed derivation can be found in the first sub-
section of the appendix.

As the definition suggests, magnetostatic chameleonlike
metashells possess adaptive responses to inside objects.
In other words, the effective scalar permeabilities of the
metashells (μs) are always equal to the permeabilities of
inside objects,

μs = μc. (2)

Due to the requirement of eq. (2), the effective per-
meability of the core-shell structure (μe) can then be ex-
pressed as

μe = μc. (3)

In this way, the question is to find some special relations
to make eq. (1) turn into eq. (3). Fortunately, we find a
special relation

√
−μθθ/μrr ln

√
p = −Z+π, (4)

where Z+ (= 1, 2, 3, · · · ) can be any positive integer.
Clearly, with eq. (4), the requirement of eq. (3) is per-
fectly satisfied; see fig. 2(b). In the anisotropic monolayer
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scheme, the size of the chameleonlike metashell is not re-
stricted because we can adjust another two variations, say
μrr and μθθ. Note that such scheme can be extended to
three dimensions, and details can be found in the second
subsection of the appendix.

Isotropic bilayer scheme. Then we consider the core-
shell-shell structure in fig. 2(c). We set the core with
radius rc and scalar permeability μc, and the two shells
with radius rs1, rs2 and scalar permeabilities μs1, μs2. We
can derive the effective permeability of the core-shell-shell
structure μe as [30]

μe = μs2
μ12 + μs2 + (μ12 − μs2) p12

μ12 + μs2 − (μ12 − μs2) p12
, (5)

where p12 = (rs1/rs2)
2. μ12 is the effective permeability

of the core plus the first shell, which can be calculated
as [30]

μ12 = μs1
μc + μs1 + (μc − μs1) pc

μc + μs1 − (μc − μs1) pc
, (6)

where pc = (rc/rs1)
2.

Fortunately, we also find a special relation to make
eq. (5) turn into eq. (3),

(μs1 + μs2)
2 + (pc − p12)

2 = 0. (7)

Namely, μs1 +μs2 = 0 and pc−p12 = 0 should be simulta-
neously satisfied. Clearly, with eq. (7), the requirement of
eq. (3) is perfectly satisfied; see fig. 2(d). In the isotropic
bilayer scheme, the size of the chameleonlike metashell is
restricted to be pc = p12. It should be noted that such
scheme cannot be extended to three dimensions, which
will be explained in the third subsection of the appendix.

So far, we have uncovered the physics of magne-
tostatic chameleonlike metashells in two dimensions,
say eq. (4) for the anisotropic monolayer scheme and
eq. (7) for the isotropic bilayer scheme. Next we
will perform finite-element simulations to validate the
two proposed schemes with COMSOL Multiphysics
(http://www.comsol.com/).

Simulation for chameleonlike metashells. – The
metashells are featured by their adaptive responses to
inside objects. Normal shells are applied to demon-
strate that common materials do not possess adaptivity.
Comparative shells with the same permeabilities of in-
side objects are applied to compare with chameleonlike
metashells. If the magnetic scalar potential distributions
outside the comparative shell and chameleonlike metashell
are the same, the chameleonlike metashell does work as ex-
pected. For simplicity, the permeabilities of matrices are
set to be the same as those of objects.

Anisotropic monolayer scheme. According to eq. (4),
we design the chameleonlike metashell with the anisotropic
monolayer scheme; see figs. 3(a)–(d). We take figs. 3(a),
(e), and (i) as an example to make the finite-element simu-
lations understandable. When the permeability of the in-
side object is 1; see fig. 3(a), the chameleonlike metashell

Fig. 3: Finite-element simulations of the anisotropic monolayer
scheme. The size of simulation box is 10 × 10 cm, rc = 1.5 cm
and rs = 3 cm for (a)–(l). For the first three rows, the magnetic
scalar potentials are 5 A for the left boundary, 0 A for the right
one, and insulated for the others. For the last row, the mag-
netic scalar potentials are 5 A for the lower left point, 0 A for
the upper and right ones, and insulated for the others. The per-
meabilities of chameleonlike metashells and normal shells are
respectively diag (10,−205.42) in cylindrical coordinates (de-
signed according to eq. (4)) and 10. The other permeabilities
in each simulation box are 1 for (a), (e), and (i), 40 for (b), (f),
and (j), ((45, −25), (−25, 45)) in Cartesian coordiantes for (c),
(g), and (k), and 30 for (d), (h), and (l). White lines represent
equipotential lines.

adaptively changes its effective permeability to be 1, which
results in the same matrix potential distribution as that
in fig. 3(i). However, the normal shell in fig. 3(e) fails
to change its permeability adaptively, which results in
the different matrix potential distribution from that in
fig. 3(i). Then we change the permeability of the object
to be 40; see figs. 3(b), (f), and (j). The same matrix
potential distributions between figs. 3(b) and (j) demon-
strate that the chameleonlike metashell works, whereas the
different matrix potential distributions between figs. 3(f)
and (j) illustrate that the normal shell fails.

Then we extend the anisotropic monolayer scheme by
setting the permeability of the object to be anisotropic;
see figs. 3(c), (g), and (k), and exposing the device into
a nonuniform external field; see figs. 3(d), (h), and (l).
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Fig. 4: Finite-element simulations of the isotropic bilayer
scheme. The parameters of (a)–(d) are the same as those in
figs. 3(a)–(d) except for the chameleonlike metashell. Namely,
μs1 = −10, μs2 = 10, rc = 1.5 cm, rs1 = 3

√
2/2 cm, and

rs2 = 3 cm, which are designed according to eq. (7).

The results show that the chameleonlike metashell is ro-
bust under more complicated conditions. Note that the
permeabilities of objects like 30 and 40 can correspond
to practical materials like ferromagnetic materials iron,
steel, etc.

Isotropic bilayer scheme. According to the require-
ment of eq. (7), we also design the chameleonlike metashell
with the isotropic bilayer scheme; see figs. 4(a)–(d). For
the convenience of comparison, we perform the finite-
element simulations based on the same parameters in
figs. 3(a)–(d) except for the chameleonlike metashell, and
hence we obtain figs. 4(a)–(d). Clearly, the same ma-
trix potential distributions between figs. 4(a)–(d) and
figs. 3(a)–(d) demonstrate that the isotropic bilayer
scheme can achieve the same effects as anisotropic mono-
layer scheme.

In a word, the chameleonlike metashells experience no
manual changes in figs. 3(a)–(d) and figs. 4(a)–(d), but
they exhibit adaptive responses to inside objects, which is
the key point of this work.

Discussion and conclusion. – When deriving the re-
quirement of the anisotropic monolayer scheme (eq. (4)),
we refer to the previous work on calculating the effective
permeability with negative value [29,30]. When deriving
the requirement of the isotropic bilayer scheme (eq. (7)),
the idea is, to some extent, related to partially resonant
composites [31–35].

Compared with the anisotropic monolayer scheme, the
isotropic bilayer scheme may be more feasible for practical

application because anisotropy is really difficult to achieve
especially for the fact that the two components of the
anisotropic tensor are one positive and one negative. In
fact, although an exact chameleonlike metashell cannot
be achieved with all positive permeabilities, an approxi-
mate one can be realized with all positive permeabilities.
The related mechanism has been revealed in electrostat-
ics [36]. Another problem is that negative permeabilities
may result in a large loss. When considering the loss, the
results will be very different because here we only discuss
the magnetostatic field where loss does not exist.

Moreover, an unexpected phenomenon should be no-
ticed, i.e., that the isotropic bilayer scheme cannot be ex-
tended to three dimensions. Such situation, from another
perspective, just proves the indispensability and specificity
of the anisotropic monolayer scheme.

The potential application of magnetostatic chameleon-
like metashells is to act as a type of all-purpose materials.
Concretely speaking, they can meet different requirements
of permeabilities under different conditions.

In summary, we have proposed two schemes to de-
sign magnetostatic chameleonlike metashells in two di-
mensions. Theoretical derivations and finite-element
simulations both validate the feasibility. Furthermore, we
succeed in extending the anisotropic monolayer scheme
to three dimensions. This work lays the foundation for
magnetostatic chameleonlike metashells, and may provide
guidance for exploring intelligent metamaterials not only
in magnetostatics, but also in other disciplines like ther-
motics and electrostatics.
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Appendix. –

Details for deriving eq. (1). The dominant equation
in magnetostatics is

∇ · (−μ∇ϕ) = 0, (A.1)

where μ and ϕ are, respectively, tensorial permeability and
magnetic scalar potential.

Equation (A.1) can be expanded in cylindrical coordi-
nates as

∂

∂r

(
rμrr

∂ϕ

∂r

)
+

∂

∂θ

(
μθθ

∂ϕ

r∂θ

)
= 0. (A.2)

The general solution of eq. (A.2) is

ϕ (μθθ/μrr < 0) = A0 + B0 ln r

+
∞∑

i=1

[Ai sin (iθ) + Bi cos (iθ)] sin (im ln r)

+
∞∑

i=1

[Ci sin (iθ) + Di cos (iθ)] cos (im ln r) , (A.3)
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ϕ (μθθ/μrr > 0) = E0 + F0 ln r

+
∞∑

i=1

[Ei sin (iθ) + Fi cos (iθ)] rin

+
∞∑

i=1

[Gi sin (iθ) + Hi cos (iθ)] r−in, (A.4)

where m =
√

−μθθ/μrr, and n =
√

μθθ/μrr.

The magnetic scalar potential distributions of the core
(ϕc), shell (ϕs), and matrix (ϕm) can then be determined
by the following boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕc < ∞,

ϕc (rc) = ϕs (rc) ,

ϕs (rs) = ϕm (rs) ,

(−μc∂ϕc/∂r)rc
= (−μrr∂ϕs/∂r)rc

,

(−μrr∂ϕs/∂r)rs
= (−μm∂ϕm/∂r)rs

,

∇ϕm (r → ∞) = ∇ϕ0,

(A.5)

where ∇ϕ0 represents the external uniform potential
gradient.

For the symmetric boundary conditions of eq. (A.5), we
only require to keep several terms with i = 1 in eq. (A.3)
and (A.4),

ϕ (μθθ/μrr < 0) = A0 + B1 cos θ sin (m ln r)
+D1 cos θ cos (m ln r) , (A.6)

ϕ (μθθ/μrr > 0) = E0 + F1r
n cos θ

+H1r
−n cos θ. (A.7)

Therefore, for isotropic matrix, we can obtain ϕm =
E0 + F1r cos θ + H1r

−1 cos θ. We set H1 to be zero to
ensure the external field to be undistorted. Then we can
derive the effective permeability of the core-shell structure
μe as eq. (1).

Three-dimensional counterpart of anisotropic mono-
layer scheme. Equation (A.1) can be expanded in spher-
ical coordinates as

1
r

∂

∂r

(
r2μrr

∂ϕ

∂r

)
+

1
sin θ

∂

∂θ

(
sin θμθθ

∂ϕ

r∂θ

)
= 0. (A.8)

The general solution of eq. (A.8) is

ϕ (μθθ/μrr < −1/8) = A0 + B0r
−1

+
∞∑

i=1

r−1/2 [Ai sin (s ln r) + Bi cos (s ln r)]

×Pi (cos θ) , (A.9)

ϕ (−1/8 < μθθ/μrr < 0) = C0 + D0r
−1

+
j∑

i=1

(
Cir

t1 + Dir
t2

)
Pi (cos θ)

+
∞∑

i=j+1

r−1/2 [Ei sin (s ln r) + Fi cos (s ln r)]

×Pi (cos θ) , (A.10)
ϕ (0 ≤ μθθ/μrr) = G0 + H0r

−1

+
∞∑

i=1

(
Gir

t1 + Hir
t2

)
Pi (cos θ) , (A.11)

where s =
√
−1/4 − i (i + 1) μθθ/μrr, t1, 2 = −1/2 ±√

1/4 + i (i + 1) μθθ/μrr, i is the summation index, j =
INT[−1/2 +

√
1/4 − μrr/ (4μθθ)], and INT [· · · ] is the

integral function with respect to · · · . Pi is Legendre
polynomials.

We find that eqs. (A.10) and (A.11) are essentially the
same with similar boundary conditions of eq. (A.5), for
we only require to keep several terms of i = 1, and hence
eqs. (A.9)–(A.11) can be simplified as

ϕ (μθθ/μrr < −1/8) = A0

+r−1/2 [A1 sin (u ln r) + B1 cos (u ln r)] cos θ, (A.12)
ϕ (μθθ/μrr > −1/8) = G0

+ (G1r
v1 + H1r

v2) cos θ, (A.13)

where u =
√

−1/4 − 2μθθ/μrr, and t1, 2 = −1/2 ±√
1/4 + 2μθθ/μrr,
We set the core with radius rc and scalar permeability

μc, and the shell with radius rs and tensorial permeability
μs = diag (μrr, μθθ, μϕϕ) with μθθ = μϕϕ for brevity. It
should be noted that μθθ/μrr < −1/8.

For the isotropic matrix, we can obtain ϕm = G0 +(
G1r + H1r

−2
)
cos θ. We set H1 to be zero to ensure the

external field to be undistorted. Then we can derive the
effective permeability of the core-shell structure μe in three
dimensions as

μe = μrr

4uμc +
[
2μc +

(
1 + 4u2

)
μrr

]
tan

(
u ln 3

√
p
)

4uμrr − 2 (2μc + μrr) tan
(
u ln 3

√
p
) ,

(A.14)

where p = (rc/rs)
3 is the core fraction.

Fortunately, we find a special relation to make
eq. (A.14) satisfy the requirement of eq. (3)√

−1/4 − 2μθθ/μrr ln 3
√

p = −Z+π, (A.15)

where Z+(= 1, 2, 3, . . .) can be any positive integer.
Clearly, with eq. (A.15), the requirement of eq. (3) is
perfectly satisfied. Therefore, magnetostatic chameleon-
like metshells can be achieved in three dimensions with
anisotropic monolayer scheme.

Explanation for the failure of the three-dimensional
isotropic bilayer scheme. We consider the core-shell-
shell structure in three dimensions. We set the core with
radius rc and scalar permeability μc, and the two shells
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with radius rs1, rs2 and scalar permeabilities μs1, μs2.
We can derive the effective permeability of the core-shell-
shell structure μe as [30]

μe = μs2
μ12 + 2μs2 + 2 (μ12 − μs2) p12

μ12 + 2μs2 − (μ12 − μs2) p12
, (A.16)

where p12 = (rs1/rs2)
3. μ12 is the effective permeability

of the core plus the first shell, which can be calculated
as [30]

μ12 = μs1
μc + 2μs1 + 2 (μc − μs1) pc

μc + 2μs1 − (μc − μs1) pc
, (A.17)

where pc = (rc/rs1)
3.

Although we find a special relation to make eq. (A.16)
turn into eq. (3),

[(p12 − 2pc + pcp12)μc − (pc − 2p12 + pcp12) μs1]
2

+ (μs1 + 2μs2)
2 = 0, (A.18)

eq. (A.18) is dependent on μc. Therefore, the isotropic bi-
layer scheme cannot work as magnetostatic chameleonlike
metshells in three dimensions.
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