LETTER

Temperature-dependent transformation multiphysics and ambient-adaptive multiphysical metamaterials

To cite this article: M. Lei et al 2021 EPL 135 54003

View the article online for updates and enhancements.

You may also like

- An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ECT
 R R Hayes, P A Newill, F J W Podd et al.

- Asymptotic multiphysics modeling of composite slender structures
 Qi Wang and Wenbin Yu

- An optimized frequency-dependent multiphysics model for an ionic polymer–metal composite actuator with ethylene glycol as the solvent
 R Caponetto, V De Luca, S Graziani et al.
Temperature-dependent transformation multiphysics
and ambient-adaptive multiphysical metamaterials

M. Lei\(^1\,^2\)\(^{(a)}\), J. Wang\(^1\,^2\)\(^{(a)}\)^{(b)}, G. L. Dai\(^4\), P. Tan\(^1\)^{(c)} and J. P. Huang\(^1\,^2\)\(^{(d)}\)

\(^1\)Department of Physics and State Key Laboratory of Surface Physics, Fudan University - Shanghai 200438, China
\(^2\)Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University - Shanghai 200438, China
\(^3\)School of Physics, East China University of Science and Technology - Shanghai 200237, China
\(^4\)School of Sciences, Nantong University - Nantong 226019, China

received 16 April 2021; accepted in final form 19 July 2021
published online 8 November 2021

Abstract – Temperature-dependent transformation thermotics provides a powerful tool for designing multifunctional, switchable, or intelligent metamaterials in diffusion systems. However, its extension to multiphysics lacks study, in which temperature dependence of intrinsic parameters is ubiquitous. Here, we theoretically establish a temperature-dependent transformation method for controlling multiphysics. Taking thermoelectric transport as a representative case, we analytically prove the form invariance of its temperature-dependent governing equations and definitively formulate the corresponding transformation rules. Finite-element simulations demonstrate solid and robust thermoelectric cloaking, concentrating, and rotating performance in temperature-dependent backgrounds. Two practical applications are further designed with temperature-dependent transformation: one is an ambient-responsive cloak-concentrator thermoelectric device that can switch between cloaking and concentrating; the other is an improved thermoelectric cloak with nearly thermostat performance inside. Our theoretical frameworks and application design may provide guidance for efficiently controlling temperature-related multiphysics and enlighten subsequent intelligent multiphysical metamaterial research.

Copyright © 2021 EPLA

Introduction. – Recent advances in metamaterials and metadevices for controlling diffusion systems have witnessed a development tendency of adaptability, adjustability, and integration [1–5]. The nonlinear transformation thermotics [6–8], evolving from the linear transformation theory [9–13], provides a definite method to exactly map the diffusive single-field distribution to a required one in temperature-dependent backgrounds. On the basis of it, metamaterial research for manipulating diffusive flows achieves enhanced convertibility [14–17] and intellectualization [18–21].

However, in practical applications, it is important to consider how to manipulate multiphysics, which is ubiquitous in nature, industry, and daily life. Until now, almost all efforts in controlling multiphysics have been confined to linear media [22–30]. This approximation may not only deviate from practical situations to some extent, but also limit the advancement on manipulating multiple fields. Referring to thermoelectric (TE) effects [31–33], temperature-dependent transport processes have been investigated due to the electron-phonon coupling mechanism [34–36] or strong interaction in quantum-dot systems [37,38]. At the macroscopic level, nonlinearity of materials is often embodied in temperature-dependent thermal conductivities, electrical conductivities, and Seebeck coefficients [39], which may introduce better TE performance beyond linear response to temperature or voltage bias [40]. In detail, the thermal conductivity \(\kappa\) may have a power-law form \(T^n\) \((n\text{ is a real number})\) with different experiential values of \(n\) for different conditions or materials, which induce different electrical conductivities according to the Wiedemann-Franz law [41]. The Seebeck coefficient \(S\) is usually directly proportional to \(T\) for metals and some semiconductors [42]. Although nonlinear transformation thermotics can extended to decoupled multiphysics readily due to the form similarity of independent governing equations, it needs to be further studied if the nonlinear transformation theory still works in regulating coupled multiphysical fields like thermoelectricity.
Inspired by the nonlinear transformation thermostics [6–8], we extend it to the temperature-dependent TE transport where material properties and/or spatial transformation operations are temperature dependent. In this way, functions of passive devices may become flexible and able to automatically adapt to changes in environments. Our study represents an example of how to apply the temperature-dependent transformation theory to design intelligent multiphysical metamaterials and metadevices, which can be generalized to other multiphysics.

Theory. – We consider a nonlinear TE coupling transport process as a representative temperature-dependent multiphysics case. First, the nonlinearity indicates the temperature dependence of electrical conductivity, which has been adequately studied. The general form of a temperature-dependent electrical conductivity tensor can be written as \(\sigma(T) \). On the other hand, according to the Wiedemann-Franz law [43], a considerable amount of materials with electron domination in heat conduction will thus have temperature-dependent thermal conductivity tensors \(\kappa(T) \). In addition, a nonlinear Seebeck coefficient tensor is given as \(S(T) \) without loss of generality. When the temperature and voltage biases are applied on the TE medium simultaneously, the coupled heat and electrical currents will be induced by each other separately besides their respective independent transport. Thus, the constitutive relations of electric current density \(J \) and heat current density \(J_Q \) can be described as [44,45]

\[
\begin{align*}
 J &= -\sigma(T) \nabla \mu - \sigma(T) S(T) \nabla T, \\
 J_Q &= -\kappa(T) \nabla T + T S^{tr}(T) J,
\end{align*}
\]

(1)

where \(\mu \) and \(T \) are the position-related electrochemical potential and temperature, and \(S^{tr}(T) \) is the transpose of \(S(T) \). Charge and heat flows are coupled by the Seebeck coefficient \(S(T) \). At the steady state with local equilibrium, the governing equations of TE transport are expressed as [44,45]

\[
\begin{align*}
 \nabla \cdot J &= 0, \\
 \nabla \cdot J_Q &= -\nabla \mu \cdot J.
\end{align*}
\]

(2)

In contrast with single physics, TE coupling transport leads to the generation of a heat source term, namely, \(-\nabla \mu \cdot J \), which can be interpreted as a Joule heating result. With the Onsager reciprocal requirement [46], electrical and thermal conductivity tensors should be symmetric. Thus, we can determine that \(\sigma(T) = \sigma^{tr}(T) \) and \(\kappa(T) = \kappa^{tr}(T) \). Substituting eq. (1) into eq. (2), the governing equations can be rewritten, respectively, as

\[
\nabla \cdot [\sigma(T) \nabla \mu + \sigma(T) S(T) \nabla T] = 0,
\]

(3)

and

\[
\begin{align*}
 -\nabla \cdot [\kappa(T) \nabla T + T S^{tr}(T) \sigma(T) S(T) \nabla T] \\
 + T S^{tr}(T) \sigma(T) \nabla \mu &= \nabla \mu \cdot [\sigma(T) \nabla \mu + \sigma(T) S(T) \nabla T].
\end{align*}
\]

(4)

We are now in the position to prove that eqs. (3) and (4) satisfy form invariance under arbitrary coordinate transformation, so that the transformation theory is still valid in the temperature-dependent TE transport process. In a curvilinear coordinate system with a set of contravariant bases \(\{g^i, g^j, g^k\} \), a group of covariant bases \(\{g_i, g_j, g_k\} \), and corresponding contravariant components \((x^i, y^j, z^k) \), the component form of eq. (3) can be expressed as

\[
\partial_i [\sqrt{g} \sigma^{ij}(T) \partial_j \mu] + \partial_i [\sqrt{g} \sigma^{ij}(T) S^k_j(T) \partial_k T] = 0,
\]

(5)

where \(g \) is the determinant of the matrix with components \(g_{ij} = g_i \cdot g_j \). And the component form of eq. (4) can be written as

\[
\begin{align*}
 \partial_i [\sqrt{g} \kappa^{ijk}(T) \partial_k T + T \sqrt{g} (S^{tr})^j_i(T) \sigma^{ij}(T) S^k_j(T) \partial_k T] \\
 + T \sqrt{g} (S^{tr})^j_i(T) \sigma^{ij}(T) \partial_i \mu &= -\sqrt{g} (\partial_j \mu) [\sigma^{ij}(T) \partial_j \mu + \sigma^{ij}(T) S^k_j(T) \partial_k T],
\end{align*}
\]

(6)

where \((S^{tr})^j_i(T)\) is the transpose of \(S^j_i(T) \). Equations (5) and (6) have the same form under different coordinates. The only difference in diverse coordinate systems is the coefficient \(g \). Here, \(g \) is not limited to position dependence and can be written as \(g(T) \) if the coordinate transformation is temperature dependent. The theory for temperature-dependent transformation TE fields allows executing temperature-dependent coordinate transformations on temperature-dependent TE materials, and these two kinds of nonlinearity will be incorporated into transformed physical parameters.

For the simplicity of derivation on transformation rules, we first demonstrate the linear transformation. Now, consider a bijection \(f: \mathbb{R} \mapsto \mathbb{R}^3 \), which is smooth enough from the pretransformed space to the transformed space in the three-dimensional Euclidean space. Due to the diffeomorphism between the pretransformed space (virtual space) with a chosen set of curvilinear coordinates \(\{x, y, z\} \) and the transformed space (physical space) with another set of Cartesian coordinates \(\{x^i, y^j, z^k\} \), eqs. (3) and (4) can be rewritten as

\[
\nabla^i \cdot [\sigma^i(T^i) \nabla^i \mu^j + \sigma^i(T^i) S^j(T^i) \nabla T^i] = 0,
\]

(7)

and

\[
\begin{align*}
 -\nabla^i \cdot [\kappa^i(T^i) \nabla T^i + T^i(S^{tr})^i_j(T^i) \sigma^i(T^i) S^j(T^i) \nabla T^i] \\
 + T^i(S^{tr})^i_j(T^i) \sigma^i(T^i) \nabla \mu^j &= \nabla \mu^j \cdot [\sigma^i(T^i) \nabla \mu^j + \sigma^i(T^i) S^j(T^i) \nabla T^i].
\end{align*}
\]

(8)

We can find that transformation rules given by eqs. (3) and (4) are consistent with eq. (7) and eq. (8). The transformed \(\kappa^i(T^i) \), \(\sigma^i(T^i) \) and \(S^i(T^i) \) can be expressed as

\[
\begin{align*}
 \kappa^i(T^i(r^i)) &= \frac{A \kappa_0(T(f^{-1}(r^i))))}{\det A} A^{tr}, \\
 \sigma^i(T^i(r^i)) &= \frac{A \sigma_0(T(f^{-1}(r^i))))}{\det A} A^{tr}, \\
 S^i(T^i(r^i)) &= A^{-tr} S(T(f^{-1}(r^i))) A^{tr}.
\end{align*}
\]
The linear transformation on temperature-dependent TE background requires tailoring of thermal conductivity, electrical conductivity, and Seebeck coefficient described in eqs. (9)–(11).

Next, we return to the theory of nonlinear TE transformation, that is, to perform temperature-dependent transformation on temperature-dependent TE backgrounds. Temperature-dependent transformation means that the transformed operations are temperature related, so the corresponding Jacobian matrices become $A(T)$. We can see that the transformation rules of linear transformation can easily be generalized to the nonlinear transformation by replacing r^* with $r'(T)$ and replacing A with $A(T)$ in eqs. (9), (10), and (11).

Simulations. – We now employ these rules to design TE metamaterials on temperature-dependent backgrounds. Equation (10) implies that the Seebeck coefficient remains invariant after coordinate transformation if the Seebeck coefficient is constant. The background thermal conductivity satisfy the transformation rules in eqs. (9) and (11). Here, we assign the background thermal conductivity a trivial scalar expression $\kappa_0(T) = \alpha + \beta T^n$ (α, β, and n are constants). According to the Wiedemann-Franz law $\kappa/\sigma = LT$ (L is the Lorenz number) [43], the background electrical conductivity can be written as $\sigma_0(T) = (\alpha T^{-1} + \beta T^{n-1})/L$. The transformed material properties can then be expressed as

$$
\kappa'(T) = \frac{\Lambda(\alpha + \beta T^n)A''}{\det A},
$$

$$
\sigma'(T) = \frac{\Lambda(\alpha + \beta T^n)/(LT)A''}{\det A},
$$

$$
S'(T) = \gamma T.
$$

Here, we consider functionalities of cloaking, concentrating and rotating in two-dimensional nonlinear backgrounds. The TE cloak keeps the central region free from heat flows and currents to maintain constant temperatures and electrically insulated. In (d)–(i), color surfaces represent temperature distributions outside, as shown in fig. 1(a). We can present the coordinate transformation relationship of the cloak in polar coordinates (r, θ) as

$$
r' = r(r_2 - r_1)/r_2 + r_1, \quad \theta' = \theta,
$$

where $r \in [0, r_2]$ and $r' \in [r_1, r_2]$. The purpose of a TE concentrator is to collect more currents and heat flows in the central region to increase the local temperature gradient without disturbing the TE distribution outside, as shown in fig. 1(b). The detailed coordinate transformation can be given as

$$
r'' = r_1'/r_m \quad (r < r_m),
$$

$$
r'' = r(r_2 - r_1)/(r_2 - r_m) + r_2(r_1 - r_m)/(r_2 - r_m) \quad (r_m < r < r_2),
$$

$$
\theta'' = \theta,
$$

where r_m is the radius between r_1 and r_2. A TE rotator serves to rotate the currents and heat flows with angle θ_0 in the central circular region without disturbing the TE distributions outside, as indicated in fig. 1(c). The corresponding coordinate transformation can be described as

$$
r''' = r, \quad \theta''' = \theta + \theta_0 \quad (r < r_1),
$$

$$
\theta''' = \theta + \theta_0(r - r_2)/(r_1 - r_2) \quad (r_1 < r < r_2).
$$

The Jacobian transformation matrix A can be expressed in polar coordinates as

$$
A = \begin{bmatrix} \partial r^*/\partial r & \partial \theta^*/(r \partial \theta) \\ r^* \partial r^*/\partial r & \partial r^* \partial \theta^*/(r \partial \theta) \end{bmatrix},
$$

where $r^* = r', r''$ or r''' and $\theta^* = \theta', \theta''$ or θ'''. Substituting eqs. (13)–(15) into eq. (16), we can obtain the
corresponding Jacobian matrices of three metamaterials. In combination with eq. (12), the transformed thermal conductivity and electrical conductivity of three metamaterials in the annulus region \((r_1 < r' < r_2)\) can be expressed as

\[
\begin{align*}
\kappa'(T) &= (\alpha + \beta T^n) \, B^*, \\
\sigma'(T) &= (\alpha + \beta T^n)/(LT) \, B^*,
\end{align*}
\]

where \(B' = B', \) \(B''\), and \(B'''\) corresponding to TE cloaks, concentrators and rotators. They can be written separately

\[
B' = \text{diag}\left[\frac{(r' - r_1)}{r'}, \frac{r'}{(r' - r_1)} \right],
\]

\[
B'' = \text{diag}\left[\frac{(r_2 - r_m)}{r_2 - r_m}, \frac{r_2 - r_m}{r_2 - r_m} \right],
\]

\[
B''' = \left[\begin{array}{c}
\frac{\theta_0 r'''}{r_1 - r_2} \\
\frac{\theta_0 r'''}{r_1 - r_2} + 1
\end{array} \right].
\]

For TE cloaks, concentrators and rotators, the electrical conductivities and thermal conductivities in the center circular region with radius \(r_1\) are the same as the backgrounds, and they can be written as

\[
\begin{align*}
\kappa^*(T) &= (\alpha + \beta T^n) \, \text{diag}[1, 1], \\
\sigma^*(T) &= (\alpha + \beta T^n)/(LT) \, \text{diag}[1, 1].
\end{align*}
\]

We then execute finite-element simulations of the designed temperature-dependent and temperature-independent TE cloak, concentrator and rotator with the commercial software COMSOL Multiphysics [47]. We use the steady TE-effect module in the two-dimensional system to simulate the temperature and potential distributions of coupled TE fields; the results are shown in the second and third panels of fig. 1, respectively. In figs. 1(d)–(i), temperature or potential distributions in backgrounds are inhomogeneous under horizontal external thermal and electrical fields due to the temperature-dependent parameters, but the cloaking, concentrating, or rotating functionalities are still valid. For further verifying the robustness of the proposed metamaterials, we subject them to different temperature boundary conditions; see fig. 2. We retain the electrical boundary conditions and fix the right boundary at 300 K. With increasing temperatures up to 1500 K at the left boundary, the nonlinearity effect gradually emerges, which can be seen from the isothermal lines. However, cloaking, concentrating, and rotating still function effectively. For clarity, the references with pure backgrounds are also displayed for comparison. Furthermore, we plot the simulation data of the central lines horizontally crossing the center of metamaterials in fig. 3. The results are echoed well in region III (outside metamaterials), indicating no distortion in backgrounds.
that relations between temperatures (or potentials) and positions in region III are not linear but tend to nonlinearity with increasing high-temperature boundary conditions. In particular, voltages at 0.06–0.08 m show negative differentials, which is due to the coupled TE effects.

Application.

A) Ambient-responsive TE cloak concentrator. Based on the proposed temperature-dependent transformation TE field theory, we further design an ambient-responsive TE cloak-concentrator device as a practical application. Due to the temperature-dependent features, cloaking and concentrating functionalities function under different environmental temperature regions, resulting in a switchable TE cloak concentrator. Here, we skip the original constitutive parameters and only consider the parameters after transformation operation. The emphasis of achieving TE cloak concentrator is to make the transformed thermal conductivity and electrical conductivity correspond to different functions under different temperatures. Thus we consider the temperature-related coordinate transformation to realize it. If we carefully check the coordinate transformation relationship in eqs. (13) and (14), we can find that eq. (14) has the same form as eq. (13) when \(r_m = 0 \). Thus, a temperature-dependent function can be constructed by replacing \(r_m \) in eq. (14) with \(r_m^*(T) \), for which the coordinate transformation relationship corresponds to cloak at \(r_m^*(T) = 0 \) and concentrator at \(r_m(T) = r_m \). Equation (13) can be rewritten as

\[
 r_m^*(T) = \frac{r_m}{1 + \exp[\eta(T - T_C)]}, \tag{20}
\]

Here, \(T_C \) is a critical temperature around which \(r_m^*(T) \) can be distinguished by 0 or \(r_m \), as schematically shown in fig. 4(a). \(\eta \) is a scaling coefficient for ensuring the step change around \(T_C \). The coordinate transformation of the shell region can be rewritten as

\[
 r' = \frac{r - r_2 - r_1}{r_2 - r_m^*(T)} + \frac{r_1 - r_m^*(T)}{r_2 - r_m^*(T)} r, \quad \theta' = \theta, \tag{21}
\]

where the transformed coordinates are temperature dependent, which also meets the requirements of nonlinear transformations. The expressions of transformed thermal and electrical conductivities can be obtained by replacing \(r_m \) in eq. (18) with \(r_m^*(T) \), so expressions can be transformed into TE cloaks when the environment temperature is higher than \(T_C \) and into TE concentrators when the environment temperature is lower than \(T_C \).

We present our results more intuitively by finite-element simulation. The simulation results are shown in figs. 4(b) and (c), according with the expected effects. The device shows concentrating within the temperature region of 300–320 K and cloaking under the temperature region 340–360 K. The higher temperature and voltage 0.01 V are set at the left boundaries, and the lower temperature and electrical grounding are set at the right boundaries. Panels (d) and (e) are the temperature and voltage curves of the center lines extracted from simulation results in (b) and (c). Regions I, II, and III are the corresponding regions in fig. 1.

![Fig. 4: TE cloak concentrator with different functions under different temperature regions.](image)

(a) The curve of \(r_m(T)/r_m \) with temperature, and \(T_C = 300 \) K, \(\eta = 2.5 \) K\(^{-1}\) in this expression of eq. (20). (b), (c): simulation results of the TE cloak concentrator. It exhibits concentration under the temperature region 300–320 K and cloaking under the temperature region 340–360 K. The higher temperature and voltage 0.01 V are set at the left boundaries, and the lower temperature and electrical grounding are set at the right boundaries. Panels (d) and (e) are the temperature and voltage curves of the center lines extracted from simulation results in (b) and (c). Regions I, II, and III are the corresponding regions in fig. 1.

B) Improved TE cloak. An improved TE cloak that can maintain a nearly constant temperature internally is designed. This is different from the existing TE cloak [29], in which the temperature inside relies on the boundary conditions. Four individual components compose the cloak, which is placed in a temperature-dependent background depicted as region III, as shown in fig. 5(a). A linear transformation is executed to region II, where the fixed thermal and electrical conductivities follow eq. (17). In
regions IV and V, the nonlinear transformation is achieved by two symmetrical equations: eq. (20) and

$$r^*_m(T) = \frac{r_m \exp[\eta(T - T_C)]}{1 + \exp[\eta(T - T_C)]}$$

It is clear that eqs. (20) and (22) exhibit opposite behaviors around T_C. We obtain expressions of transformed thermal and electrical conductivities by substituting them into eq. (19). This operation may make the internal temperature approach T_C. Although an-
only facilitate multiple flow guidance but also be beneficial to the development of self-adaptation in metamaterial design.

We thank Prof. KEZHAO XIONG and Mr. FUBAO YANG for beneficial discussion. We acknowledge financial support from the National Natural Science Foundation of China under Grants No. 11725521 and No. 12035004, and from the Science and Technology Commission of Shanghai Municipality under Grant No. 20JC1414700.

Data availability statement: All data that support the findings of this study are included within the article (and any supplementary files).

REFERENCES