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Robust one-way edge state in convection-diffusion systems
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Abstract – Topological insulators are insulated in the bulk but can support edge states on the
surface. Since the discovery of edge states in quantum mechanics systems, the related physics
has also been extended to classical wave systems. Here, we manage to reveal that edge states are
not necessarily limited to wave systems but can also exist in convection-diffusion systems that are
essentially different from wave systems. For this purpose, we study heat transfer in a graphene-like
(or honeycomb) lattice to demonstrate thermal edge states with robustness against defects and dis-
orders. Convection is compared to electron cyclotron, which breaks space-reversal symmetry and
determines the direction of thermal edge propagation. Diffusion leads to interference-like behavior
between opposite convection, preventing temperature propagation in the bulk. We also display
thermal unidirectional interface states between two lattices with opposite convection. These re-
sults extend the physics of edge states beyond wave systems.

Copyright c© 2021 EPLA

Introduction. – Topological insulators were initially
discovered in quantum mechanics systems [1,2], which
are insulated in the bulk but conductive on the sur-
face. Since the foundation of quantum physics is the
Schrödinger wave mechanics, there is a similarity between
quantum waves and classical waves in terms of equation
forms. Therefore, the concept of topological insulators
has also been extended to classical wave systems [3], in-
cluding but not limited to electromagnetics [4–11] and
acoustics [12–21]. The related research was commonly
conducted in nonreciprocal systems with the broken time-
reversal symmetry induced by an external magnetic bias
for electromagnetics [4–6] or an external momentum bias
for acoustics [12–16]. Regardless of the quantum or classi-
cal description, a feature of topological insulators is that
they can support edge states on the surface, which has
broad applications for isolators and sensors.

Although edge states have been intensively studied in
wave systems, they have received almost no attention in
diffusion systems. Unlike wave systems with time-reversal
symmetry, diffusion systems feature space-reversal sym-
metry, indicating that diffusion is identical along two
opposite directions. Inspired by topological wave insu-
lators [3] with the broken time-reversal symmetry, it is
natural to consider the broken space-reversal symmetry
of diffusion systems. Fortunately, several methods are
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available to break space-reversal symmetry, such as apply-
ing asymmetric structures and nonlinear materials [22–25]
and considering spatiotemporal modulations [26–29]. Be-
sides symmetry differences, diffusion systems also lack the
concept of phase because diffusion generally occurs from
high to low potentials, such as from high to low tempera-
tures for heat transfer and from high to low concentrations
for mass transfer. To solve the problem, we can introduce
a periodic temperature [30–36] for heat transfer or a peri-
odic concentration [37] for mass transfer, which has been
experimentally validated [30,31]. With these preliminary
analyses, we are able to discuss thermal edge states by
considering heat transfer with conduction, as well as con-
vection for breaking space-reversal symmetry. Let us start
from the theory.

Theory. – Two basic structures with counterclock-
wise and clockwise convection are presented in figs. 1(a)
and (b), respectively. Convection is an analog of elec-
tron cyclotron, which determines the direction of thermal
edge propagation, thus called thermal spin herein. For
brevity, we regard counterclockwise convection as spin-
up and clockwise convection as spin-down. The vertex
regions in fig. 1 are solid pumps with high thermal con-
ductivities to drive fluids with convective velocity of v.
Besides fluids, convection can also be effectively realized
with spatiotemporal modulations of thermal conductivity
and density [26–29], which has been experimentally ver-
ified to break space-reversal symmetry [28]. Therefore,
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Fig. 1: Two basic structures with inner radius r1 and outer
radius r2. Vertex regions are solid pumps to drive fluids with
(a) counterclockwise velocity and (b) clockwise velocity of v.

what we discuss is a simple and practical system of heat
transfer whose governing equation is [38]

ρC
∂T

∂t
+ ∇ · (−κ∇T + ρCvT ) = 0, (1)

where ρ, C, κ, and v denote density, heat capacity, ther-
mal conductivity, and convective velocity, respectively. T
and t represent temperature and time, respectively. ρCv is
the convective term that breaks space-reversal symmetry.

We then need to introduce the concept of phase. For
this purpose, we consider a periodic temperature source
whose temperature is

T = Ae−iωt + B, (2)

where A, ω, and B are the temperature amplitude, cir-
cular frequency, and reference temperature of the temper-
ature source. The real part of eq. (2) denotes the actual
temperature. The temperature source can generate a tem-
perature profile with spatiotemporal periodicity,

T = Aei(α·r−ωt) + B, (3)

with wave vector α and position vector r.
To understand the broken space-reversal symmetry in-

duced by convection, we discuss a one-dimensional case
along the x-axis. Since conduction has dissipation, the
wave vector should be a complex number, i.e., α = β + iγ
with wave number β and decay rate γ. The substitution
of eq. (3) into eq. (1) yields

β =

√
2ε

4
, (4a)

γ =
−8vω + 2

√
2v2ε +

√
2D2ε3

16ωD
, (4b)

with definitions of ε =
√

−v2/D2 +
√

v4/D4 + 16ω2/D2

and D = κ/ (ρC). When v = 0, it is identical along two
opposite directions. If v �= 0, a change from v to −v yields
the same ε and β but different γ, indicating different de-
cay rates along two opposite directions. Therefore, nonre-
ciprocal temperature propagation can be achieved with
convection, which offers an opportunity to realize one-
way temperature propagation. Generally speaking, two

Fig. 2: Thermal edge states. Left and right columns display the
structures and simulations at 500 s, respectively. The stars in
(a), (c), and (e) denote the positions of periodic temperature
sources whose temperatures are T = 40 cos (−πt/5) + 323 K.
The arrows in (d) and (f) show the direction of temperature
propagation. The fluids are water with a thermal conductiv-
ity of 0.6 W m−1 K−1, a heat capacity of 4200 J kg−1 K−1,
and a density of 1000 kg/m3. The solid pumps are copper
with a thermal conductivity of 400 W m−1 K−1, a heat ca-
pacity of 390 J kg−1 K−1, and a density of 8900 kg/m3. r1 =
2 − 2

√

3/30 mm and r2 = 2 mm.

parameters mainly affect temperature propagation: ther-
mal diffusivity determines the decay rate; and convective
velocity determines the temperature propagation speed.
The chosen parameters are based on water that has a rel-
atively small thermal diffusivity, so dissipation is not that
intense and the expected phenomena can still be observed.

Simulation. – We then design a graphene-like (or hon-
eycomb) lattice composed of spin-up units, as presented
in fig. 2(a). We firstly discuss the bulk property and put
a temperature source in the center (see fig. 2(a)). Each
side contains opposite convection in the bulk, so tempera-
ture propagation decays far more quickly, as described by
eq. (4b). Therefore, the bulk cannot support temperature
propagation and becomes insulated (see fig. 2(b)). We
then discuss the surface property and put a temperature
source at the bottom left corner (see fig. 2(c)). Each side
contains only unidirectional convection on the surface, so
the decay rate is far lower than that in the bulk. Since the
graphene-like lattice is composed of spin-up units, the sur-
face can support only counterclockwise temperature prop-
agation (see fig. 2(d)), which is direct evidence of thermal
edge states. Unlike the edge states in wave systems, those
in convection-diffusion systems have diffusion-induced
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Fig. 3: Robustness against defects and disorders. (a) and (b):
reversing a unit. (c) and (d): stopping a unit. (e) and (f):
removing six units. The other parameters are the same as
those in fig. 2.

dissipation. A simple physical image to understand ther-
mal edge states is that the surface decay rate is far lower
than the bulk decay rate, so temperature propagation
is allowed only on the surface. To confirm that ther-
mal edge states have directionality, we further construct a
graphene-like lattice with spin-down units (see fig. 2(e)).
The simulation shows that thermal edge propagation still
exists but with clockwise direction (see fig. 2(f)). The re-
sults in fig. 2 are in accordance with electron edge states
whose propagation directions are determined by electron
cyclotrons. Therefore, it is reasonable to compare convec-
tion to electron cyclotron despite different mechanisms.
In other words, the directions of thermal edge states are
locked by thermal spins (i.e., convective directions).

Since edge states are unidirectional, defects and disor-
ders cannot cause backscattering. Analogously, thermal
edge states should also be robust against defects and dis-
orders. To confirm this robustness, we perform extended
simulations based on the graphene-like lattice. We first
change one unit from spin-up to spin-down (see fig. 3(a)).
The result indicates that the thermal edge state still ex-
ists (see fig. 3(b)), but it has a slightly higher decay rate
than fig. 2(d). We then stop one unit from rotating (see
fig. 3(c)), and the result is presented in fig. 3(d), demon-
strating that the thermal edge state remains unchanged.
We finally remove six units from the graphene-like lat-
tice, as displayed in fig. 3(e). Temperature propagation
is still allowed only on the surface (see fig. 3(f)). There-
fore, the results in fig. 3 prove that thermal edge states

Fig. 4: Thermal interface states. (a) and (b): temperature
source at the bottom left corner. (c) and (d): temperature
source at the top right corner. The other parameters are the
same as those in fig. 2.

are robust against defects and disorders. Moreover, since
thermal edge states are robust, the graphene-like lattice is
not mandatory and other lattices are also applicable like
a square lattice.

We further discuss thermal interface states. In quan-
tum mechanics systems and classical waves systems, the
interface between two materials with different topological
phases can support topological interface states. Therefore,
similar properties should also be applicable to convection-
diffusion systems. To reveal thermal interface states, we
combine two graphene-like lattices composed of spin-up
and spin-down units (see figs. 4(a) and (c)). Since two
lattices have different spin directions, unique sides exist
at their interface, with the same convective directions.
Therefore, the decay rate at the interface is the smallest,
which can support temperature propagation (see fig. 4(b)).
We also prove the unidirectionality of temperature propa-
gation by putting the temperature source at the output of
fig. 4(b), and temperature propagation is forbidden (see
fig. 4(d)). Therefore, thermal interface states exist be-
tween two lattices with different spin directions. The re-
sults in fig. 4 also agree well with the understanding of
electron interface states that the interface of two materials
with different topological phases is conductive. The simu-
lations in figs. 2–4 prove that the edge states in convection-
diffusion systems have properties similar to those in wave
systems.

We finally discuss the transition of thermal edge states.
For this purpose, we change two parameters of the
graphene-like lattice, i.e., the thermal conductivity of
the fluid and the circular frequency of the temperature
source (see fig. 5(a)). We first change the thermal con-
ductivity of the fluid from 0.6 W m−1 K−1 (water) to
0.001 W m−1 K−1 and 400 W m−1 K−1, and the results
are shown in figs. 5(b) and (c), respectively. Both cases
become conductive in the bulk and thermal edge states no
longer exist. This phenomenon can be explained by the
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Fig. 5: Transition of thermal edge states. (a) Schematic di-
agram. Temperature profile with the thermal conductivity of
the fluid being (b) 0.001 W m−1 K−1 and (c) 400 W m−1 K−1.
Temperature profile with the frequency of the temper-
ature source being (d) 2π/5 rad/s, (e) π/25 rad/s, and
(f) π/50 rad/s.

decay rate. When the thermal conductivity of the fluid
is small (0.001 W m−1 K−1), the heat exchange between
opposite convection is insufficient, so the decay rate in the
bulk is similar to that on the surface, leading to that tem-
perature propagation is allowed both in the bulk and on
the surface. When the thermal conductivity of the fluid is
large (400 W m−1 K−1), the convective term becomes rel-
atively weak and can be ignored. In this way, the broken
space-reversal symmetry induced by convection is not ob-
vious, so nonreciprocal propagation almost does not exist.
Therefore, the graphene-like lattice not only supports edge
states but also supports bulk states. We further discuss
the frequency of the temperature source. The periodicity
in figs. 5(d)–(f) is 5, 50, and 100 s, respectively. As pre-
dicted by eq. (4b), a smaller ω (i.e., a larger periodicity)
yields a lower decay rate. Therefore, as ω decreases, the
thermal edge state has a larger penetration depth. When
the periodicity reaches 100 s, the bulk is almost conductive
(see fig. 5(f)). It can also be imagined that when the peri-
odicity tends to infinity (ω → 0), the graphene-like lattice
also supports bulk states, demonstrating the necessity to
consider the role of phase (or periodicity).

Discussion and conclusion. – Thermal edge states
are closely related to three factors. I) Convection strength,
which should be neither too weak nor too strong. If
convection is too weak, the broken space-reversal sym-
metry is not obvious. If convection is too strong,

conduction-induced heat exchange between opposite con-
vection is insufficient. II) Temperature frequency. The
reason why opposite convection can prevent temperature
propagation lies in the interference-like behavior of two
temperature waves. If a near-zero temperature frequency
is applied (tending to steady states without phase fea-
tures), the interference-like behavior is not obvious and
bulk states can be supported. III) System size. Since
temperature amplitude features decay along the propaga-
tion direction, a large size causes a large decay. Therefore,
we should carefully design these parameters of convection
strength, temperature frequency, and system size. Mean-
while, thermal edge states are based on practical materials
like water and copper, which can be experimentally real-
ized in principle.

The edge states in convection-diffusion systems are also
compared with those in wave systems, and these two types
of edge states show similar properties. Therefore, the fun-
damental origin of thermal edge states might also be topol-
ogy. However, it is not simple to calculate band structures
or Chern numbers in convection-diffusion systems because
there is no obvious correspondence between the diffusion
equation and the Schrödinger equation. Recent inter-
est in non-Hermitian topology [39–43] may provide some
insights. A common approach to a non-Hermitian Hamil-
tonian is to introduce gain and loss to a Hermitian Hamil-
tonian. In contrast, diffusion itself features loss, so our
system of heat transfer is essentially non-Hermitian [30],
which can also be confirmed by the spatial decay of tem-
perature propagation in figs. 2–5. For simplicity, further
explorations on non-Hermitian thermal topology might fo-
cus on one-dimensional systems at first.

In summary, this work reveals that robust one-way edge
states can also exist in convection-diffusion systems. Con-
vection breaks space-reversal symmetry and contributes
to one-way temperature propagation. Convection can also
be compared to electron cyclotron, which determines the
direction of thermal edge propagation. We further con-
firm the robustness of thermal edge states against defects
and disorders. Moreover, we identify thermal interface
states between two lattices with different spin directions.
Potential applications of thermal edge states can be ex-
pected due to the robustness against defects and disorders,
such as thermal camouflaging [44–46] and sensing [47–49].
These findings may also guide exploring topological prop-
erties with diffusive dynamics and open a new topological
diffusion research field, especially topological thermotics.
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