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Abstract – Thermal conductivities are the key to heat transfer, and high thermal conductivities
are generally beneficial and sometimes indispensable to design thermal metadevices. Therefore,
the exploration of high thermal conductivities never stops. However, infinite thermal conduc-
tivities have not yet been discovered. To solve the problem, we propose an exact approach to
effectively infinite thermal conductivities with a constant-temperature boundary condition, which
can be easily realized by an external thermostatic sink. Since (effectively) infinite thermal con-
ductivities just correspond to zero refractive indexes in photonics, they have direct applications
in designing zero-index thermal metadevices. For example, we experimentally demonstrate zero-
index thermal cloaks which can work in highly conductive backgrounds with simple structures.
These results provide insights into thermal metadevices and thermal management with effectively
infinite thermal conductivities.

Copyright c© 2020 EPLA

Introduction. – Thermal conductivities play a cru-
cial role in heat transfer, and extreme (zero and infinite)
thermal conductivities are always a research focus due to
their excellent properties. For low thermal conductivities,
a recent study reported that the thermal conductivity of
ceramic aerogel can be as low as 0.0024 W m−1 K−1 [1].
For high thermal conductivities, there is still a long way
ahead. Although many materials have high thermal con-
ductivities, such as boron nitride with 600 W m−1 K−1 [2],
carbon nanotube with 2300 W m−1 K−1 [3], and graphene
with 5300 W m−1 K−1 [4], they are still far from infinite
thermal conductivities.

To overcome the difficulty, a recent study reported that
the effective thermal conductivity of a moving fluid can
approximately tend to infinity [5]. Such an effectively
infinite thermal conductivity requires the velocity of the
moving fluid to be also infinite, which cannot be exactly
realized. To go further, here we propose an exact ap-
proach to effectively infinite thermal conductivities with
even simpler structures. That is, by applying a constant-
temperature boundary condition on an object with a finite
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thermal conductivity, the object can have an effectively
infinite thermal conductivity. Meanwhile, the constant-
temperature boundary condition can be easily realized by
an external thermostatic sink, which is beneficial for prac-
tical applications.

Since (effectively) infinite thermal conductivities are in
analogy of zero refractive indexes in photonics [6–12], they
can be used to design zero-index thermal metadevices. We
take thermal cloaking [13–26] as an example which can
be realized by transformation thermotics [13–16], bilayer
scheme [17–22], or scattering cancellation [23,24]. Here
we use effectively infinite thermal conductivities to realize
zero-index thermal cloaks, which can work in highly con-
ductive backgrounds with simple structures. Concretely
speaking, if the previous bilayer scheme [17–22] is ap-
plied to a highly conductive background (such as cop-
per, 400 W m−1 K−1), the thermal conductivity of the
inner shell is zero, and that of the outer shell should
be larger than 400 W m−1 K−1. However, few com-
mon materials have thermal conductivities higher than
400 W m−1 K−1 [5]. Although some rare materials like
diamond have high thermal conductivities, the cost and
difficulty of practical applications also increase. By con-
trast, if the zero-index scheme is applied, the core with
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a constant-temperature boundary condition can have an
effectively infinite thermal conductivity. Therefore, the
thermal conductivity of the outer shell can be smaller than
400 W m−1 K−1, and many common materials like alu-
minum can be applied. Therefore, the zero-index scheme
is free from the thermal conductivities of backgrounds.

Theory of effectively infinite thermal conductiv-

ity. – Thermal conduction is dominated by the Fourier
law, namely J = −κ∇T , where J is heat flux, κ is thermal
conductivity, and T denotes temperature. To understand
the temperature effect of an infinite thermal conductivity,
we put a two-dimensional elliptical particle (with thermal
conductivity κp = ∞, actually set as 1010 W m−1 K−1) in
the background (with thermal conductivity κb) and apply
a horizontal thermal field K0. As a result, the isotherms
are all repelled, and the black arrows (denoting the di-
rections of heat fluxes) are always perpendicular to the
exterior boundary of the particle (see fig. 1(a)). Clearly,
the particle is isothermal, and a brief proof is as follows.
We denote the temperature distribution of the particle as
Tp. By solving the Laplace equation ∇ · (−κ∇T ) = 0, we
can derive Tp as

Tp =
−κb

Lp1κp + (1 − Lp1)κb

K0x1 + T0, (1)

where K0 = |K0|, T0 is reference temperature, and
(x1, x2, x3) denote the Cartesian coordinates. Lp1 is the
shape factor of the particle along the x1-axis, which will
be discussed later. Equation (1) indicates that whatever
value Lp1 takes on, if κp = ∞, Tp is always a constant T0.
Physically speaking, since heat fluxes (J = −κ∇T ) do not
diverge, a direct conclusion from κ = ∞ is ∇T = 0. In
other words, a finite thermal conductivity with a constant-
temperature boundary condition is equivalent to an infi-
nite thermal conductivity. For comparison, we reset κp to
a finite value (κp < ∞, actually set as 0.026 W m−1 K−1)
and apply a constant-temperature boundary condition on
the boundary of the particle (see fig. 1(b)). As a result,
the temperature profile and directions of heat fluxes are
the same as those in fig. 1(a), thus achieving an effectively
infinite thermal conductivity with a constant-temperature
boundary condition. Note that such an equivalence is only
exact for temperature distributions.

Theory of zero-index thermal cloak. – Zero-index
metadevices have been widely studied to manipulate elec-
tromagnetic waves [6–12] and acoustic waves [27–30] due
to their excellent properties. We know that the directions
of heat fluxes are always perpendicular to the exterior
boundary of the particle with an (effectively) infinite ther-
mal conductivity (see figs. 1(a) and (b)). This phe-
nomenon is in accordance with that of zero refractive
indexes in photonics where electromagnetic waves travel
outward vertically from materials with zero refractive in-
dexes. Therefore, (effectively) infinite thermal conduc-
tivities can be directly used to design zero-index thermal
metadevices.

Fig. 1: (a) Temperature profile with an elliptical parti-
cle (κp = ∞, actually set as 1010 W m−1 K−1) embedded in
the background (κb = 400 W m−1 K−1). (b) Temperature
profile with a common particle (κp < ∞, actually set as
0.026 W m−1 K−1) and a constant-temperature boundary con-
dition (with temperature (Max+Min)/2) embedded in the
same background. Here Max and Min denote the tempera-
tures of the left and right boundaries, respectively. Rainbow
surfaces denote temperature distributions, and white lines rep-
resent isotherms. (c) Schematic diagram of zero-index thermal
cloak. A constant-temperature boundary condition is applied
on the boundary of the core, so the core has an effectively
infinite thermal conductivity.

Zero-index thermal cloaks are a typical example of zero-
index thermal metadevices, which can be realized by in-
troducing thermal convection [5]. Such a scheme requires
the velocity of moving fluid to be infinite which cannot
be exactly realized, thus called near-zero-index thermal
cloaks. In contrast, the present approach can realize exact-
zero-index thermal cloaks with even simpler structures be-
cause only an external thermostatic sink is required to
realize a constant-temperature boundary condition. In a
word, thermal zero-index parameters indicate that ther-
mal conductivities are (effectively) infinite. We apply a
constant-temperature boundary condition on the core to
realize an effectively infinite thermal conductivity, so the
present thermal cloaks are also called zero-index thermal
cloaks.

Zero-index thermal cloaks are essentially a core-shell
structure (see fig. 1(c)). We denote the thermal conductiv-
ities of the core and shell as κc and κs, respectively. The
subscript c (or s) represents the core (or shell) throughout
this work. For generality, we consider an ellipsoidal case
in three dimensions. The semiaxes of the core and shell
along the xi-axis (i = 1, 2, 3) are denoted as rci and rsi,
respectively. The effective thermal conductivity of such
a core-shell structure (denoted as κe) is anisotropic, and
the component along the xi-axis (denoted as κei) can be
calculated by

κei = κs

Lciκc + (1 − Lci)κs + f(1 − Lsi)(κc − κs)

Lciκc + (1 − Lci)κs − fLsi(κc − κs)
, (2)

where f = rc1rc2rc3/(rs1rs2rs3) is core fraction. Lci and
Lsi are, respectively, the shape factors of the core and shell

24002-p2



Effectively infinite thermal conductivity

along the xi-axis, which can be calculated by

Lwi =
rw1rw2rw3

2

×

∫
∞

0

du

(u + r2
wi)

√
(u + r2

w1)(u + r2
w2)(u + r2

w3)
. (3)

Here the subscript w can take c or s, representing the
shape factor of the core or shell. Note that only when the
core-shell structure is concentric or confocal, can eq. (2)
predict the effective thermal conductivities exactly.

When a constant-temperature boundary condition is
applied, the thermal conductivity of the core turns to in-
finity, namely κc = ∞, as proved in figs. 1(a) and (b).
Then, eq. (2) becomes

κei = κs

Lci + f(1 − Lsi)

Lci − fLsi

. (4)

Equation (4) can also be applied to two dimensions as
long as we take rw3 = ∞ and f = rc1rc2/(rs1rs2). Then,
eq. (3) can be reduced to Lw1 = rw2/(rw1 + rw2), Lw2 =
rw1/(rw1 + rw2), and Lw3 = 0. As an intrinsic property,
Lw1 + Lw2 + Lw3 = 1 is always valid no matter in two or
three dimensions.

Simulations of zero-index thermal cloak. –

We perform simulations with COMSOL Multiphysics
(http://www.comsol.com/) to confirm these theoretical
analyses. Without loss of generality, we discuss two two-
dimensional cases including a circular one and an ellip-
tical one. Figures 2(a) and (b) show the circular case
where the thermal conductivities of the core and shell
are κc = 0.026 and κs = 203 W m−1 K−1, respectively.
The thermal conductivity of the background is set as
κb = κe = 400 W m−1 K−1 which is derived from eq. (4).
When a constant-temperature boundary condition is not
applied, the isotherms are contracted due to the smaller ef-
fective thermal conductivity of the core-shell structure (see
fig. 2(a)). However, if we apply a constant-temperature
boundary condition on the boundary of the core, thermal
cloaking can be achieved because the core has an effec-
tively infinite thermal conductivity (see fig. 2(b)).

We further discuss the elliptical case with the same
thermal conductivities of the core-shell structure, namely
κc = 0.026 and κs = 203 W m−1 K−1. Different from
the circular case, the effective thermal conductivity of
the elliptical core-shell structure is anisotropic. There-
fore, we set the thermal conductivity of the background
as κb = κe = diag(358, 270)W m−1 K−1 (expressed in
Cartesian coordinates) which is also derived from eq. (4).
In the presence of a horizontal thermal field, the smaller
effective thermal conductivity of the core-shell structure
makes the isotherms contracted (see fig. 2(c)), whereas a
constant-temperature boundary condition helps us achieve
thermal cloaking (see fig. 2(d)). The results are similar if
the system is in the presence of a vertical thermal field
(see figs. 2(e) and (f)).

Fig. 2: Simulations of zero-index thermal cloak. The system
size is 20 × 20 cm2. The thermal conductivities of the core and
shell are κc = 0.026 and κs = 203 W m−1 K−1, respectively.
The thermal conductivities of the background in (a)–(b) and
(c)–(f) are κb = 400 and κb = diag(358, 270) W m−1 K−1, re-
spectively. The inner and outer radii of the shell in (a) and (b)
are rc1 = rc2 = 4 and rs1 = rs2 = 7 cm, respectively. The inner
and outer semiaxes of the elliptical shell in (c)–(f) are rc1 = 4,
rc2 = 2, rs1 = 7, and rs2 = 6 cm, respectively. The left and
right columns show the temperature profiles without and with
a constant-temperature boundary condition, respectively. The
constant-temperature boundary condition is set at 298 K. The
high and low temperatures are set at 313 and 283 K, respec-
tively. The other boundaries are insulated.

Experiments of zero-index thermal cloak. – For
experimental demonstration, we fabricate six samples to
confirm the six simulations in fig. 2. We use inte-
grated fabrication technology, indicating that the sam-
ples have not weld joints. The three samples without a
constant-temperature boundary condition are presented
in figs. 3(a), (c), and (e). Air holes are drilled on the
copper plate to realize the designed thermal conductivi-
ties of the shell and background. Another three samples
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Fig. 3: Schematic diagrams of six samples and experimental
setup. The thermal conductivities of air and copper are 0.026
and 400 W m−1 K−1, respectively. The size of each sample is
20×20×4 cm3 with copper thickness of 2 mm. The central air
hole in (a) and (b) has a radius of 4 cm, and that in (c)–(f) has
semiaxes of rc1 = 4 and rc2 = 2 cm. The effective shell radius
in (a) and (b) is 7 cm, and the effective shell semiaxes in (c)–(f)
are rs1 = 7 and rs2 = 6 cm. The air holes in the shell regions in
(a)–(f) have the same radius of 1.6 mm, thus making the effec-
tive thermal conductivity of the shells to be 203 W m−1 K−1.
The air holes in the background regions in (c)–(f) have a major
semiaxis of 2.9mm and a minor one of 0.8 mm, thus making
the effective thermal conductivity of the backgrounds to be
diag(358, 270) W m−1 K−1. The distance between air holes in
the shell region is 5mm, and that in the background region is
10 mm. The temperatures of hot, medium, and cold sources
are set at 313, 298, 283 K, respectively. (g)–(i) Real photos of
(b), (d), and (f), respectively.

with a constant-temperature boundary condition are pre-
sented in figs. 3(b), (d), and (f). By immersing the cen-
tral hollow cylinders in an external thermostatic sink with
medium temperature, a constant-temperature boundary
condition can be obtained and effectively infinite thermal
conductivities are achieved. Compared with other active
schemes [31–33], our scheme does not require complicated
temperature settings. The upper and lower surfaces of
these six samples are, respectively, covered with transpar-
ent plastic and foamed plastic to reduce environmental
interferences. The real photos of figs. 3(b), (d), and (f)
with top view are presented in figs. 3(g)–(i), respectively.

Then, we use the Flir E60 infrared camera to detect tem-
perature distributions. The measured results correspond-
ing to the six samples in fig. 3 are presented in the left
two columns of fig. 4. We also perform finite-element sim-
ulations according to these six samples, and correspond-
ing results are shown in the third and fourth columns of
fig. 4. For quantitative analyses, we plot the temperature
distributions at x1 = −8 cm for the first two rows and
x2 = −8 cm for the last row (the origin is in the center of
each simulation). The experiments and simulations agree
well with each other (see figs. 4(m)–(o)), thus confirming
the feasibility of realizing zero-index thermal cloaks with
effectively infinite thermal conductivities.

Fig. 4: Measured results (left two columns) and simulated re-
sults (the third and fourth columns) of the six samples in fig. 3.
Dashed lines are plotted for the convenience of comparison.
(m) and (n) show the temperature distributions at x1 = −8 cm
(the origin is in the center of each simulation), and (o) shows
the temperature distributions at x2 = −8 cm. Each line corre-
sponds to a figure shown in the legend.

The cloaking effect is also robust under more compli-
cated conditions such as different directions of external
fields, point heat sources, and three dimensions. Further-
more, thermal cloaking can be extended to other functions
such as thermal camouflaging [34–46]. Nevertheless, the
scheme is applicable for only stable states because the tem-
perature of a constant-temperature boundary condition is
fixed.

Conclusion. – In summary, we have shown that by
applying a constant-temperature boundary condition on a
common material, an effectively infinite thermal conduc-
tivity can be exactly achieved. Meanwhile, the constant-
temperature boundary condition can be easily realized
by an external thermostatic sink. The present approach
has direct applications in designing zero-index thermal
cloaks which can work in highly conductive backgrounds
with simple structures. These features such as accu-
racy and simplicity are beneficial to practical applications.
This work applies a constant-temperature boundary con-
dition to realize effectively infinite thermal conductivi-
ties, which is expected to design more zero-index thermal
metadevices.
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