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Abstract – Nonlinear (temperature-dependent) thermal conductivities are common in nature, so
their in-depth studies are valuable to practical applications. However, for core-shell metamaterials
with nonlinear thermal conductivities, only an approximate theory was proposed to deal with weak
nonlinearity, and almost no theory can handle strong nonlinearity strictly. To solve this problem,
we propose a rigorous theory under certain conditions to calculate the effective thermal conduc-
tivities of core-shell metamaterials with nonlinear thermal conductivities, whether weak or strong.
Furthermore, we design intelligent applications with the present theory. We take thermal radiation
with the Rosseland diffusion approximation as an example, which is a typical system containing
nonlinear thermal conductivities, and further realize switchable functions between concentrating
and cloaking. The present theory and application are confirmed by finite-element simulations. Our
results lay the theoretical foundation for nonlinear core-shell metamaterials and provide insights
into nonlinear thermal management.

Copyright c© EPLA, 2020

Introduction. – Thermal energy is of particular sig-
nificance to human beings, so researchers have paid lasting
attention to the key parameter for manipulating thermal
energy, say, thermal conductivities. Since the proposal
of transformation thermotics [1,2], thermal metamateri-
als with linear thermal conductivities have been designed
intensively, having cloaking [3–12], concentrating [3,8,
12–14], rotating [3,11,12], camouflaging [7,15–27], and
chameleon-like behaviors [28–30]. Here, “linear” means
that thermal conductivities are temperature-independent.

Thermal metamaterials with nonlinear (temperature-
dependent) thermal conductivities have also attracted re-
search interest. For example, nonlinear transformation
thermotics was proposed to design macroscopic thermal
diodes [31,32]; the effective nonlinear thermal conductivi-
ties of periodic structures were calculated [33,34]; an ap-
proximate theory was put forward to handle core-shell
metamaterials with weak nonlinearity [35]; and nonlinear
thermal conductivities were also used to design practical
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applications [36–42]. Here, “weak nonlinearity” means
that linear (temperature-independent) terms are the dom-
inant ones of nonlinear thermal conductivities.

However, most theories are approximate and applicable
for only weak nonlinearity, which limits practical applica-
tions. To solve this problem, we study core-shell meta-
materials with nonlinear thermal conductivities, whether
weak or strong. With the only assumption that the ra-
tio of the nonlinear thermal conductivities of the core and
shell is a constant, we establish a rigorous theory to cal-
culate their effective thermal conductivity. Certainly, the
rigorous theory can also be extended to more general cases
with a small cost of accuracy.

With the present theory, we are allowed to design intel-
ligent applications by taking advantage of nonlinear ther-
mal conductivities. We take thermal radiation with the
Rosseland diffusion approximation as an example, which
is a typical system containing nonlinear thermal conduc-
tivities [43,44]. We further design a switchable device
which can achieve thermal concentrating at low temper-
atures and thermal cloaking at high temperatures. Such
a design is for a practical reason: we expect to harvest
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Fig. 1: Schematic diagrams of (a) a core-shell metamaterial
and (b) a core-shell-shell (bilayer) metamaterial embedded in
the matrix.

thermal energy at low temperatures thus requiring a con-
centrator, whereas large heat fluxes (resulting from high
temperatures) may damage the apparatus thus requiring
a cloak. We perform finite-element simulations to confirm
the design, and the results agree well with the theory.

Two-dimensional theory. – We consider a core-shell
metamaterial embedded in a matrix (see fig. 1(a)). The
nonlinear thermal conductivities of the core κc(T ), shell
κs(T ), and matrix κm(T ) are denoted as

κc(T ) =

n∑
i=1

αiT
λi , (1)

κs(T ) =

n∑
i=1

βiT
λi , (2)

κm(T ) =

n∑
i=1

γiT
λi , (3)

where αi, βi, γi, and λi can be any constants. Equa-
tions (1), (2), or (3) are the most common form of nonlin-
ear thermal conductivities. To establish a rigorous theory
for nonlinear thermal conductivities, we firstly consider a
special case with κs(T )/κc(T ) = μ and κm(T )/κc(T ) =
ν, thus yielding βi/αi = μ and γi/αi = ν, where μ
and ν are two constants. A passive and steady pro-
cess of thermal conduction satisfies the Laplace equation
∇ · [−κ(T )∇T ] = 0. Therefore, the dominant equation in
the core can be expressed as

∇ · [−κc(T )∇T ] = ∇ ·

[
−

n∑
i=1

αiT
λi∇T

]
= 0. (4)

By setting αj/αi = ωj , we can obtain

∇ ·

⎡
⎣−αi∇

⎛
⎝ n∑

j=1

ωj

λj + 1
T λj+1

⎞
⎠

⎤
⎦ = 0. (5)

With βi/αi = μ, γi/αi = ν, and αj/αi = ωj, we can
also derive βj/βi = ωj and γj/γi = ωj, so the dominant

equation in the shell and matrix can be expressed as

∇ ·

⎡
⎣−βi∇

⎛
⎝ n∑

j=1

ωj

λj + 1
T λj+1

⎞
⎠

⎤
⎦ = 0, (6)

∇ ·

⎡
⎣−γi∇

⎛
⎝ n∑

j=1

ωj

λj + 1
T λj+1

⎞
⎠

⎤
⎦ = 0. (7)

We make a substitution

ϕ =

n∑
j=1

ωj

λj + 1
T λj+1, (8)

so eqs. (5)–(7) can be expressed in cylindrical coordinates
(r, θ) as

∂

∂r

(
r
∂ϕ

∂r

)
+

∂

∂θ

(
∂ϕ

r∂θ

)
= 0. (9)

Equation (9) is a linear equation, so its general solution
is [45]

ϕ = A0 + B0 ln r +
∞∑

i=1

[Ai cos(iθ) + Bi sin(iθ)]ri

+

∞∑
j=1

[Cj cos(jθ) + Dj sin(jθ)]r−j . (10)

As is shown in fig. 1(a), we suppose that the core, shell,
and matrix have ϕc, ϕs, and ϕm, respectively. The asso-
ciated boundary conditions can be expressed as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tc|r=rc
= Ts|r=rc

,

Ts|r=rs
= Tm|r=rs

,

−κc(∂Tc/∂r)|r=rc
= −κs(∂Ts/∂r)|r=rc

,

−κs(∂Ts/∂r)|r=rs
= −κm(∂Tm/∂r)|r=rs

,

(11)

where rc and rs are the radii of the core and shell, re-
spectively. Equation (11) indicates the temperature con-
tinuity and the normal heat flux continuity. With eqs. (8)
and (11), we can rewrite down the boundary conditions as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕc|r→0 is finite,

ϕc|r=rc
= ϕs|r=rc

,

ϕs|r=rs
= ϕm|r=rs

,

−αi(∂ϕc/∂r)|r=rc
= −βi(∂ϕs/∂r)|r=rc

,

−βi(∂ϕs/∂r)|r=rs
= −γi(∂ϕm/∂r)|r=rs

,

ϕm|r→∞ = −|∇ϕ0|r cos θ,

(12)

where |∇ϕ0| is the modulus of the uniform thermal field.
With the symmetry requirement of boundary conditions,
we can know ϕc = Ac1r cos θ, ϕs = (As1r + Cs1r

−1) cos θ,
and ϕm = (Am1r + Cm1r

−1) cos θ. When the nonlinear
thermal conductivity of the matrix is equal to the effective
thermal conductivity of the core-shell metamaterial, the
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isotherms in the matrix are parallel lines which requires
Cm1 = 0. Therefore, by solving eq. (12) with Cm1 = 0, we
can obtain

γi = βi

αi + βi + (αi − βi)p

αi + βi − (αi − βi)p
, (13)

where p = r2
c/r2

s is the core fraction. Since we do not re-
strict the value of i, it can take values from 1 to n. There-
fore, the nonlinear thermal conductivity of the matrix (say,
the effective thermal conductivity of the core-shell meta-
material) should satisfy

κm(T ) =

n∑
i=1

βi

αi + βi + (αi − βi)p

αi + βi − (αi − βi)p
T λi . (14)

Two-dimensional simulations. – To confirm our
theory, we put a core-shell metamaterial in a matrix,
and set the thermal conductivity of the matrix to be the
same as the effective thermal conductivity of the core-shell
metamaterial, as required by eq. (14). The left and right
sides are fixed at 300 K and 900 K, respectively. The up-
per and lower sides are thermally insulated. Then, we
compare the temperature distributions in the matrix with
a finite-element method (based on the “solid heat trans-
fer” module of COMSOL MULTIPHYSICS [46]) and an
analytical method.

Firstly, we perform a finite-element simulation to obtain
the temperature distribution of the system (see fig. 2(a)).
We also plot the ∂T/∂y distribution in the matrix (see
fig. 2(b)). For quantitative comparisons, we perform
finite-element simulations with different temperature in-
tervals, and export the temperature distributions on the
dashed line in fig. 2(a) (see the lines in fig. 2(c)). We also
perform finite-element simulations with different core frac-
tions, and export the ∂T/∂y distribution on the dashed
line in fig. 2(b) (fig. 2(d)). The values of ∂T/∂y are al-
ways zero, indicating that the core-shell structure does not
distort the temperature distribution in the matrix.

Secondly, we calculate the temperature distributions
with an analytical method. For this purpose, we denote
the temperatures of left and right sides as Tl and Tr, re-
spectively. With the substitution of eq. (8), Tl and Tr

become ϕl and ϕr, respectively. Therefore, we can ob-
tain ϕm = (ϕr − ϕl)x/W + (ϕr + ϕl)/2, where W is the
width of the system. Then, the temperature values can
be derived by solving eq. (8). These analytical values are
also plotted by symbols in fig. 2(c), which are consistent
with the simulation values. Therefore, the present theory
is rigorous.

We have established a rigorous theoretical framework
for calculating the effective thermal conductivities of core-
shell metamaterials with nonlinear thermal conductivities,
whether weak or strong. As mentioned above, our theory
is rigorous under the conditions of κs(T )/κc(T ) = μ and
κm(T )/κc(T ) = ν. We should point out that the the-
ory is also applicable when these two conditions are not

Fig. 2: Two-dimensional simulations of a rigorous case. The
simulation size is 8 × 8 m2, rc = 2m, and rs = 3m (p =
0.44). The nonlinear thermal conductivities of the core, shell,
and matrix are 102 + 10−2T + 10−4T 2 + 10−6T 3 W/(m · K),
50+5×10−3T +5×10−5T 2+5×10−7T 3 W/(m · K), and 67.39+
6.739 × 10−3T + 6.739 × 10−5T 2 + 6.739 × 10−7T 3 W/(m · K),
respectively. (a) Temperature distribution of the system.
(b) ∂T/∂y distribution of the system. (c) Temperature dis-
tributions on the dashed line in (a) with different temperature
intervals. (d) ∂T/∂y distribution on the dashed line in (b) with
different core fractions.

met. In fact, if these two conditions are not met, the ef-
fective thermal conductivities of core-shell metamaterials
are not well defined because the isotherms in the matrix
can never be parallel lines. Therefore, we should define
a physical quantity to test the performance of the theory.
Since the value of ∂T/∂y can reflect the distortion degree
of isotherms, we use the average value of |∂T/∂y| in the
matrix (denoted as ξ) to test the theory, namely

ξ =

∫
Ω |∂T/∂y|dxdy∫

Ω dxdy
, (15)

where Ω denotes the integration area, namely the matrix.
When ξ = 0, the isotherms are strictly parallel lines, indi-
cating a rigorous case. The smaller the value of ξ is, the
better the approximation is.

To confirm the statement, we keep κc(T ) unchanged,
and set κs(T ) to be the same as κc(T ) except for one non-
linear term. κm(T ) is still calculated by eq. (14). We
perform finite-element simulations with different values of
κs(T ), and the results are presented in figs. 3(a)–(e) with
the same temperature interval, say, 300–900 K. To test
the distortion degree of isotherms in figs. 3(a)–(e), we also
export the corresponding values of ξ. Meanwhile, we also
change the temperature intervals and obtain the values
of ξ. These results are presented in fig. 3(f). We can find
that ξ is no longer zero, indicating that κm(T ) derived
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Fig. 3: Two-dimensional simulations of general cases.
(a)–(e) Temperature distributions of five different cases with
the left and right temperatures kept at 300 K and 900 K, re-
spectively. The thermal conductivity of the core is 102 +
10−2T + 10−4T 2 + 10−6T 3 W/(m · K) for all cases. The
thermal conductivity of the shell and matrix are respec-
tively 50 + 10−2T + 10−4T 2 + 10−6T 3 W/(m · K) and 67.39 +
10−2T + 10−4T 2 + 10−6T 3 W/(m · K) for case I; 100 + 5 ×

10−3T +10−4T 2+10−6T 3 W/(m · K) and 100+6.739×10−3T +
10−4T 2 + 10−6T 3 W/(m · K) for case II; 100 + 10−2T + 5 ×

10−5T 2+10−6T 3 W/(m · K) and 100+10−2T+6.739×10−5T 2+
10−6T 3 W/(m · K) for case III; 100 + 10−2T + 10−4T 2 +
5 × 10−7T 3 W/(m · K) and 100 + 10−2T + 10−4T 2 + 6.739 ×

10−7T 3 W/(m · K) for case IV; and 50+5×10−3T+5×10−5T 2+
5 × 10−7T 3 W/(m · K) and 67.39 + 6.739 × 10−3T + 6.739 ×

10−5T 2 + 6.739 × 10−7T 3 W/(m · K) for case V. (f) ξ-T profile
where T represents the temperature of the left side. The tem-
peratures of left and right sides change, but the temperature
difference is kept at 600 K.

from eq. (14) is not exactly the effective thermal conduc-
tivity of the core-shell metamaterial. However, the values
of ξ are no more than 0.2643 in the simulations, indicating
that the isotherms are distorted slightly and κm(T ) is still
close to the effective thermal conductivity of the core-shell
metamaterial.

Intelligent applications. – Nonlinear thermal con-
ductivities are common in nature, For instance, the
thermal conductivities of some glass are measured to
be proportional to T 1.8 in low temperatures [47], and

the thermal conductivities of high purity crystals of sil-
icon and germanium decrease faster than T −1 from 3 K
to their melting point [48]. Here we take thermal ra-
diation as an example. With the Rosseland diffusion
approximation, thermal radiation is of T 3 temperature-
dependence [43,44], which belongs to strong nonlinearity.
Combining thermal conduction with thermal radiation, a
passive and steady process of heat transfer is dominated by

∇ · Jtotal = ∇ · (Jcon + Jrad) = 0. (16)

The conductive flux is determined by the Fourier Law
Jcon = −κ∇T , and the radiative flux is given by the
Rosseland diffusion approximation Jrad = −τT 3

∇T .
The radiative coefficient takes the value τ = 16/3η−1n2σ,
where η is the Rosseland mean extinction coefficient,
n is the relative refractive index, and σ = 5.67 ×
10−8 W/(m2 · K4) is the Stefan-Boltzmann constant.
Therefore, eq. (16) can be also expressed as

∇ · [−(κ + τT 3)∇T ] = 0. (17)

Clearly, a thermal conduction-radiation problem can be
converted to the problem of nonlinear thermal conductiv-
ity with κ(T ) = κ + τT 3, so the present theory of eq. (14)
is still applicable.

For a matrix with a fixed nonlinear thermal conductiv-
ity, we hope to design a core-shell-shell (bilayer) metama-
terial embedded in the matrix (see fig. 1(b)), which can
achieve thermal concentrating at low temperatures and
thermal cloaking at high temperatures. To achieve this
goal, we denote the nonlinear thermal conductivities of
the core κc(T ), inner shell κi(T ), and outer shell κo(T ) as⎧⎪⎪⎨

⎪⎪⎩
κc(T ) = κc + τcT

3,

κi(T ) = κi + τiT
3,

κo(T ) = κo + τoT
3,

(18)

where κc, κi, κo, τc, τi, and τo are six constants.
For multilayered structures, our theory is still applica-

ble. Firstly, we can calculate the effective thermal con-
ductivity of the core and the first shell κ(1)(T ). Secondly,
we regard the core and the first shell as an equivalent core
with thermal conductivity κ(1)(T ), and calculate the effec-
tive thermal conductivity of the equivalent core and the
second layer κ(2)(T ). With successive iterations, we can
obtain the effective thermal conductivity of the multilay-
ered structure, namely κm(T ).

At low temperatures, nonlinear thermal conductivities
are mainly dominated by linear terms, so the influence of
temperature-dependent terms (τc, τi, and τo) can be ig-
nored. To keep the temperature distribution of the matrix
unaffected, the thermal conductivity of the matrix should
satisfy⎧⎪⎪⎪⎨

⎪⎪⎪⎩
κ(1)(T ) = κi

κc + κi + (κc − κi)p1

κc + κi − (κc − κi)p1
,

κm(T ) = κo

κ(1)(T ) + κo + [κ(1)(T ) − κo]p2

κ(1)(T ) + κo − [κ(1)(T ) − κo]p2
,

(19)
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Fig. 4: (a) Thermal concentrating at low temperatures.
(b) Thermal cloaking at high temperatures. The thermal
conductivities of the core, inner shell, and outer shell are
1.000 + 5.000 × 10−7T 3 W/(m · K), 17.00 W/(m · K), 307.8 +
3.571 × 10−3T 3 W/(m · K), respectively. The thermal conduc-
tivity of the matrix is set as 200.0+1.000×10−3T 3 W/(m · K).

where p1 = r2
c/r2

i , p2 = r2
i /r2

o , and κ(1)(T ) is the effective
thermal conductivity of the core and inner shell. Besides,
the thermal conductivity of the core should be smaller
than that of the matrix so that the temperature gradient
in the core is larger than that in the matrix, ensuring the
concentrating effect. Since temperature-dependent terms
are ignored at low temperature, eq. (19) is independent of
temperature.

At high temperatures, nonlinear thermal conductivi-
ties are mainly dominated by the temperature-dependent
terms, so the influence of linear terms (κc, κi, and κo) can
be ignored. To achieve the purpose of thermal cloaking,
the thermal conductivity of the inner shell is set near to
zero, namely τi ≈ 0 W/(m · K). With such a setting, the
effective thermal conductivity of the core and inner shell
is also near to zero, namely κ(1)(T ) ≈ 0 W/(m · K). To
make the matrix temperature distribution undistorted by
the bilayer structure, the nonlinear thermal conductivity
of the matrix should satisfy⎧⎨

⎩
κ(1)(T ) ≈ 0,

κm(T ) = τo

1 − p2

1 + p2
T 3.

(20)

Combing eqs. (19) and (20), we can obtain the thermal
conductivity of the matrix in both low and high tempera-
tures as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

κ(1)(T ) = κi

κc + κi + (κc − κi)p1

κc + κi − (κc − κi)p1
,

κm(T ) = κo

κ(1)(T ) + κo + [κ(1)(T ) − κo]p2

κ(1)(T ) + κo − [κ(1)(T ) − κo]p2

+τo

1 − p2

1 + p2
T 3.

(21)

We also perform finite-element simulations to confirm
the design (see fig. 4). The left and right sides are fixed
at constant temperatures. The upper and lower sides are
thermally insulated.

Figure 4(a) shows thermal concentrating at low tem-
peratures. The structure has an inner diameter of 1 m, an
inner shell thickness of 0.5 m, and an outer shell thickness
of 0.5 m, embedded in the matrix with side length of 6 m.
Corresponding thermal conductivities are described in the
figure caption. The left and right sides are set at 300 K and
400 K, respectively. Color surfaces represent temperature
distributions, and white lines represent isotherms. We can
observe that the isotherms in the matrix are straight lines,
indicating that the temperature distribution in the matrix
is not affected by the structure. At the same time, the
isotherms in the core are denser than those in the matrix,
which indicates that the structure plays the role of thermal
concentrating.

Figure 4(b) shows thermal cloaking at high tempera-
tures. The parameters of the bilayer structure and matrix
are the same as those in fig. 4(a). The left and right sides
are set at 1600 K and 1700 K, respectively. It can be seen
that the isotherms in the matrix are straight lines. Mean-
while, there is no isotherm in the core, indicating that
the core maintains a constant temperature, and thermal
cloaking is achieved.

The switchable behavior can be well understood with
the following explanation. The designed nonlinear ther-
mal conductivity is composed of a linear term and a non-
linear term. At low temperatures such as 300–400 K, the
linear term is dominant, so the device behaves as a con-
centrator. At high temperatures such as 1600–1700 K, the
nonlinear term is dominant, so the device acts as a cloak.
Therefore, the performance can be still satisfying at other
temperature intervals, as long as only one term (either the
linear term or the nonlinear term) is dominant. Theoret-
ically speaking, the device can always maintain a good
performance as long as the temperatures do not reach the
melting point of the material. For sample fabrications,
practical materials like aerogels are good candidates to
have a tolerance of high temperatures up to more than
2000 K [49,50], so our design is applicable at high tem-
peratures. Compared with an existing study on thermal
cloak-concentrator [36], our design considers the global
nonlinearity of the system rather than a local nonlinear-
ity, so the temperature distributions in the matrix are dis-
tinctly different. Moreover, our nonlinearity results from
thermal radiation, and the nonlinearity in the study [36]
relies on shape memory alloys.

Three-dimensional theory. – The present theory
can also be extended to three-dimensional cases. Simi-
larly, we consider a core-shell metamaterial embedded in
a matrix. The nonlinear thermal conductivities of the core
κ′

c(T ), shell κ′

s(T ), and matrix κ′

m(T ) are denoted as

κ′

c(T ) =

n∑
i=1

α′

iT
λ′

i , (22)

κ′

s(T ) =
n∑

i=1

β′

iT
λ′

i , (23)
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κ′

m(T ) =

n∑
i=1

γ′

iT
λ′

i , (24)

where α′

i, β′

i, γ′

i, and λ′

i can be any constants. We also
suppose that κ′

s(T )/κ′

c(T ) = μ′ and κ′

m(T )/κ′

c(T ) = ν′,
where μ′ and ν′ are two constants. Therefore, the domi-
nant equation in the core can be expressed as

∇ · [−κ′

c(T )∇T ] = ∇ ·

[
−

n∑
i=1

α′

iT
λ′

i∇T

]
= 0. (25)

By setting α′

j/α′

i = ω′

j , we can obtain

∇ ·

⎡
⎣−α′

i∇

⎛
⎝ n∑

j=1

ω′

j

λ′

j + 1
T λ′

j+1

⎞
⎠

⎤
⎦ = 0. (26)

With β′

i/α′

i = μ′, γ′

i/α′

i = ν′, and α′

j/α′

i = ω′

j , we can
also derive β′

j/β′

i = ω′

j and γ′

j/γ′

i = ω′

j, so the dominant
equation in the shell and matrix can be expressed as

∇ ·

⎡
⎣−β′

i∇

⎛
⎝ n∑

j=1

ω′

j

λ′

j + 1
T λ′

j+1

⎞
⎠

⎤
⎦ = 0, (27)

∇ ·

⎡
⎣−γ′

i∇

⎛
⎝ n∑

j=1

ω′

j

λ′

j + 1
T λ′

j+1

⎞
⎠

⎤
⎦ = 0. (28)

We make a substitution

ϕ′ =
n∑

j=1

ω′

j

λ′

j + 1
T λ′

j+1, (29)

so eqs. (5)–(7) can be expressed in spherical coordinates
(r, θ, φ) as

∂

∂r

(
r2 ∂ϕ′

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ϕ′

∂θ

)
= 0, (30)

where φ vanishes because we consider the spherically sym-
metric case. Equation (30) is a linear equation, so its gen-
eral solution is [45]

ϕ′ =

∞∑
l=0

[Alr
l + Blr

−(l+1)]Pl(cos θ). (31)

With the boundary conditions similar to eq. (12), we
can know ϕ′

c = A′

c1r cos θ, ϕ′

s = (A′

s1r + B′

s1r
−2) cos θ,

and ϕ′

m = (A′

m1r + B′

m1r
−2) cos θ. Therefore, by solving

eq. (12) with B′

m1 = 0, we can obtain

γ′

i = β′

i

α′

i + 2β′

i + 2(α′

i − β′

i)p
′

α′

i + 2β′

i − (α′

i − β′

i)p
′
, (32)

where p′ = r′3
c /r′3

s is core fraction. Since we do not restrict
the value of i, it can take values from 1 to n. Therefore,
the nonlinear thermal conductivity of the matrix (namely

Fig. 5: Three-dimensional simulations of a rigorous case. The
simulation size is 8 × 8 × 8 m3, r′

c
= 2 m, and r′

s
= 3 m

(p′ = 0.296). The thermal conductivities of the core, shell,
and matrix are 102 + 10−2T + 10−4T 2 + 10−6T 3 W/(m · K),
50 + 5 × 10−3T + 5 × 10−5T 2 + 5 × 10−7T 3 W/(m · K), and
62 + 6.2 × 10−3T + 6.2 × 10−5T 2 + 6.2 × 10−7T 3 W/(m · K),
respectively. (a) Temperature distribution. (b) ∂T/∂y distri-
bution. (c) ∂T/∂z distribution.

the effective thermal conductivity of the core-shell meta-
material) should satisfy

κ′

m(T ) =
n∑

i=1

β′

i

α′

i + 2β′

i + 2(α′

i − β′

i)p
′

α′

i + 2β′

i − (α′

i − β′

i)p
′
T λ′

i . (33)

We also perform a finite-element simulation to test the
three-dimensional theory, and obtain the temperature dis-
tribution of the system (see fig. 5(a)). The isotherms in
the matrix are straight lines and parallel to the z-axis, in-
dicating that the the thermal conductivity of the matrix
is equal to the effective thermal conductivity of the core-
shell metamaterial. We also plot the ∂T/∂y and ∂T/∂z
distributions in the matrix (see figs. 5(b) and (c), respec-
tively). According to our theory, these two values in the
matrix are 0, which is also confirmed by the simulations.

Discussion and conclusion. – The present theory is
rigorous in both two and three dimensions as long as the
ratio of the nonlinear thermal conductivities of the core
and shell is a constant. If the ratio is not a constant, the
present theory is approximate but still applicable. Cer-
tainly, the scheme can be extended to elliptical/ellipsoidal
cases [9,43]. Meanwhile, the scheme can also be extended
to deal with transient cases as long as we take density and
heat capacity into consideration [9,43].

To sum up, we have proposed a rigorous theory to calcu-
late the effective thermal conductivities of core-shell meta-
materials with nonlinear thermal conductivities, whether
weak or strong. For intelligent applications, we further
design a bilayer metamaterial with switchable functions
between thermal concentrating at low temperatures and
thermal cloaking at high temperatures. The feasibility of
this method is also confirmed by finite-element simula-
tions. These results may also have potential applications
for heat transfer at microscopic scale where nonlinear-
ity is common [51,52], such as realizing thermal camou-
flage [53,54].
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