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Abstract. The research on thermal illusion contributes to both fundamental theories and practical appli-
cations. In the existing literatures, the most common mechanism is to design a shell to disguise the inside
core. However, the core-shell scheme may be weak to handle many-particle systems because N particles
may require N specially-designed shells. This lacks efficiency and restricts practical applications. To solve
this problem, we can no longer focus on the local effect of a single particle. In contrast, we should study the
macroscopic effect of the N particles by treating each particle as an equivalent thermal dipole. Then, ther-
mal illusion can be achieved when the macroscopic equivalent thermal dipole moments of different systems
are equal to each other. This requires only once calculation and contributes to efficiency. Accidentally, the
concept of equivalent thermal dipole helps to revisit the well-known Bruggeman theory and provides a clear
physical image for it. The proposed scheme is verified by theoretical analyses, finite-element simulations,
and laboratory experiments. Our work offers an efficient approach to achieving thermal illusion in many-
particle systems, and contributes to potential applications in misleading infrared detection, manipulating
heat flux, etc.

1 Introduction

The past decade has witnessed the development of ther-
mal management with novel thermal metamaterials, such
as thermal cloaks [1–9], thermal concentrators [10–15],
thermal guiders [16–18], thermal “golden touch” [19],
chameleonlike metashells [20]. Recently, thermal illu-
sion [21–28] has attracted intensive research interest for
its wide applications. The related scheme is mostly based
on the core-shell structure, namely designing a specific
shell to disguise the inside core. Although the core-shell
scheme is excellent to handle single-particle problems, it
seems weak to handle many-particle problems. That is, if
N particles should be disguised, N times of calculations
may be required to design N specific shells. It is inefficient
and inflexible.

To solve this problem, we cannot be restricted to the
core-shell scheme, and focus on only the local effect of
a single particle. In contrast, we should pay attention
to the macroscopic effect of the N particles. Since ther-
mal conductivities can’t be directly added or subtracted,
a following problem is how to handle the macroscopic
effect of the N particles. Inspired by electrostatics, we
can treat a thermal particle as an equivalent thermal
dipole [29–34]. Concretely speaking, the authors of ref-
erence [29] defined the thermal dipole moment, and the
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authors of references [29–34] used the definition to explore
the effective thermal conductivity and mutual interac-
tion of aligned spheroids and graded nanolayers. In this
work, we fully discuss the relation between a thermal
particle and a thermal dipole, even considering material
anisotropy and geometry anisotropy of the thermal parti-
cles. In this way, thermal conductivities are vectorized to
equivalent thermal dipole moments which possess addi-
tivity. Therefore, thermal illusion can be achieved with
the concept of equivalent thermal dipole, namely consid-
ering the macroscopic equivalent thermal dipole moment
of the N particles. It requires only once calculation and
contributes to efficiency.

Accidentally, the concept of equivalent thermal dipole
helps to draw a clear physical image for the famous
Bruggeman theory [35]. Although it has been a long time
since the Bruggeman theory was established, the applica-
tion ranges are still ambiguous [35,36]. We will explain it
clearly after the theoretical analyses. In what follows, the
scheme is validated by theoretical analyses, finite-element
simulations, and laboratory experiments.

2 Theoretical analyses

First, we recall the electrostatic equation ∇ ·(−ε∇ϕ) = ρe
in two dimensions, where ε, ϕ, and ρe are permittivity,
electric potential, and charge density, respectively. In the
presence of a uniform electric field along the horizontal
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Fig. 1. Two-dimensional counterpart between (a–c) electric field and (d–f) thermal field. (a, b) Present the electric responses of
a dielectric particle and an electric dipole in the presence of a uniform electric field E0, respectively. (c) Shows the mathematical
form for treating a dielectric particle as an equivalent electric dipole. (d–f) The thermal counterpart of (a–c).

direction (E0), a dielectric particle (with permittivity εp
and radius r) can exert the same effect as an electric dipole
(with positive charge qe and distance l); see Figures 1a
and 1b. Compared with the definition of an electric dipole
moment Me = qel, a dielectric particle can be regarded
as an equivalent electric dipole with equivalent dipole
moment M∗e = 2πεm (εp − εm) / (εp + εm) r2E0, where
εm is the permittivity of the matrix; see Figure 1c.

Second, we consider the heat conduction equation
∇ · (−κ∇T ) = ρh in two dimensions, where κ, T , and ρh
are thermal conductivity, temperature, and thermal power
density, respectively. Because of the similarity of equation
forms, the thermal counterpart of an equivalent electric
dipole is natural; say, κ→ ε, ϕ→ T , and ρe → ρh. There-
fore, with a uniform thermal field (K0), a thermal particle
(with thermal conductivity κp and radius r) can also exert
the same effect as a thermal dipole (with hot source power
qh and distance l); see Figures 1d and 1e. We carefully
discuss the equivalent thermal dipole in what follows.

The temperature distribution outside the thermal par-
ticle (Tm) in Figure 1d is [19]

Tm = −K0ρ cos θ +
κp − κm
κp + κm

r2K0ρ
−1 cos θ + T0, (1)

where κm is the thermal conductivity of the matrix, and
(ρ, θ) is the cylindrical coordinates. The second term
on the right-hand side of equation (1) is caused by the
thermal particle.

The temperature distribution (T ) in Figure 1e is

T = −K0ρ cos θ +
Mh

2πκm
ρ−1 cos θ + T0, (2)

where the second term on the right-hand side is caused by
the thermal dipole with dipole moment (Mh) defined as

Mh = qhl. (3)

We rewrite equation (1) according to the form of
equation (2),

Tm = −K0ρ cos θ +
M∗h

2πκm
ρ−1 cos θ + T0, (4)

where the second term on the right side can now be
regarded as the effect caused by an equivalent thermal
dipole with equivalent dipole moment (M∗h) defined as

M∗h = 2πκm
κp − κm
κp + κm

r2K0. (5)

Equation (5) establishes the relation between a thermal
particle and a thermal dipole (Fig. 1f), which is similar to
the relation between a dielectric particle and an electric
dipole (Fig. 1c). In other words, a thermal particle can be
regarded as an equivalent thermal dipole with equivalent
dipole moment (M∗h) determined by equation (5). Next,
we discuss how to use the concept of equivalent thermal
dipole to realize thermal illusion.

Thermal illusion is to design two different systems to
possess the same thermal effect, and hence it can be used
to mislead thermal detections. For example, if n1 pur-
ple particles (with thermal conductivity κ1 and radius
r1) plus n2 brown particles (with thermal conductivity
κ2 and radius r2) have the same thermal effect as n3 red
particles (with thermal conductivity κ3 and radius r3);
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Fig. 2. Thermal illusion achieved by regarding thermal par-
ticles in (a, b) as equivalent thermal dipoles in (c, d). The
physical explanation of vectorization is when the macroscopic
equivalent thermal dipole moments of (c, d) are equal, thermal
illusion between (a, b) can be realized.

see Figures 2a and 2b, the purpose of thermal illusion is
achieved. A question is what requirement the two different
systems should satisfy. It is difficult to directly answer this
question because thermal conductivities do not possess
additivity. To solve this problem, we should vectorize these
thermal particles, and regard each one as an equivalent
thermal dipole; see Figures 2c and 2d. Since the equiva-
lent thermal dipole moments possess additivity, thermal
illusion can be achieved when the macroscopic equivalent
thermal dipole moments of two different systems are equal
to each other,

n1M
∗
h1 + n2M

∗
h2 = n3M

∗
h3, (6)

where M∗hi can be calculated by setting κp and r in
equation (5) to be κi and ri with i = 1, 2, 3.

Further, we discuss the material anisotropy [19] and
geometry anisotropy [7] of a thermal particle, and build
the relation between an anisotropic thermal particle and
a thermal dipole, to ensure the research completeness.

If we consider the material anisotropy with thermal
conductivity ←→κ p = diag (κρρ, κθθ), equation (5) can be
extended to

M∗h = 2πκm
uκρρ − κm
uκρρ + κm

r2K0, (7)

where u =
√
κθθ/κρρ, and uκρρ can be regarded as the

effective scalar thermal conductivity (κp) corresponding
to the tensorial one (←→κ p). Here, the anisotropic thermal
conductivity is uniform in the cylindrical coordinates. For
an anisotropic (even nonuniform) case in the Cartesian
coordinates, an approximate method is to calculate the

spatial average thermal conductivity along the direction
of the external thermal field [15].

On the other hand, when we consider the geometry
anisotropy of an ellipse particle (with vertical semiaxis s
and horizontal semiaxis t), equation (5) can be extended
to

M∗h = πκm
κp − κm

κpL+ κm (1− L)
stK0, (8)

where the horizontal shape factor L is given by

L =
st

2

∫ ∞
0

da

(t2 + a)
√

(s2 + a) (t2 + a)
. (9)

Since the geometry is anisotropic, the effect of thermal
illusion is also directional. Nevertheless, the analytical
solution to a particle with both anisotropic material and
geometry is difficult to derive, but we can resort to finite-
element simulations to determine its effective thermal
conductivity and thermal dipole moment.

Here, we only consider the thermal illusion between two
types (purple and brown) of particles in Figure 2a and
one (red) type of particles in Figure 2b. More generally, if
we consider the thermal illusion between j types of parti-
cles (respectively with n1, n2, . . . , nj particles) and N − j
types of particles (respectively with nj+1, nj+2, . . . , nN
particles), equation (6) can be extended to

j∑
i=1

niM
∗
hi =

N∑
i=j+1

niM
∗
hi, (10)

where M∗hi can be calculated from equation (5), (7), or (8)
with corresponding parameters.

Two comments on equation (10) are that (i) although
the equivalent thermal dipole moment (M∗hi) is dependent
on the external field (K0), equation (10) is independent
of the external field (K0) because each term contains a
same K0 which can be eliminated; and (ii) the equivalent
thermal dipole moment (M∗hi) is dependent on the matrix
thermal conductivity. In other words, thermal illusion is
independent of the external field (K0), but dependent on
the matrix thermal conductivity. The three-dimensional
theory is presented in the Appendix.

So far, it is time to revisit the famous Bruggeman the-
ory [35]. It is believed that the theory can explain the
effective properties of the systems where the fractions of
two materials are comparable. Also, the particles should
be randomly distributed and may have overlaps [35,36].
However, “comparable”, “randomly”, and “overlaps” are
three ambiguous descriptions. Here, we present a clear
physical image to understand the Bruggeman theory.
First, we write down the Bruggeman formula in two
dimensions,

φ
κ1 − κe
κ1 + κe

+ (1− φ)
κ2 − κe
κ2 + κe

= 0, (11)

where κe is the effective thermal conductivity of the two
materials, and φ is the area fraction corresponding to the
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material with thermal conductivity κ1. We also rewrite
our result [Eq. (6)] in a different way,

A1
κ1 − κm
κ1 + κm

+A2
κ2 − κm
κ2 + κm

= A3
κ3 − κm
κ3 + κm

, (12)

where Ai = niπr
2
i with i = 1, 2, 3. By taking κ3 = κm =

κe and φ = A1/ (A1 +A2), our result [Eq. (12)] turns
to the same form as the Bruggeman theory [Eq. (11)].
With the concept of equivalent thermal dipole and the
understanding of equation (12) in this work, we find that
the two terms on the left-hand side of equation (11) can
be explained as the relative magnitudes of the macro-
scopic equivalent thermal dipole moments corresponding
to the two materials. It is “relative magnitude” rather
than “absolute magnitude” because φ = A1/ (A1 +A2)
and 1 − φ = A2/ (A1 +A2) are area fractions. The sum-
mation of the two terms is zero, which means that the
total dipole moment is zero and the two materials (with
thermal conductivities κ1 and κ2) exert no influence on
the matrix (with thermal conductivity κe). Thus, κe is
defined as the effective thermal conductivity of the two
materials. However, the difference is that here κe should
be regarded as the thermal conductivity of a real matrix (a
third material) where the original two materials are peri-
odically embedded in the manner presented in Figure 2a.
To sum up, the physical understanding of the Bruggeman
theory [Eq. (11)] is that when it is satisfied, the two
types of particles (with thermal conductivities κ1 and κ2)
arranged in the manner presented in Figure 2a have the
same property as the matrix (with thermal conductivity
κe). This description is explicit without ambiguous words
like “comparable”, “randomly”, and “overlaps”. In other
words, we provide a standard model (Fig. 2a) where the
Bruggeman theory is clearly explained.

3 Finite-element simulations

We are now in a position to present two-dimensional finite-
element simulations based on COMSOL Multiphysics1 to
confirm the proposed theory; see Figure 3. The thermal
conductivities and particle sizes are designed according to
equation (10).

We put two different types of particles (purple and
brown) into the matrix (shown with 50% opaqueness in
order not to cover the temperature distribution), and the
isotherms are contracted; see Figure 3a. Then, we only
put red particles into the matrix, and the isotherms are
contracted with the same extent; see Figure 3b. There-
fore, thermal illusion between purple plus brown particles
in Figure 3a and red particles in Figure 3b is achieved.
For quantitative analysis, Figure 3c shows the x compo-
nent of the thermal field (Kx = −∂T/∂x) on the two solid
black lines (one in x axis, the other in y axis) in each sim-
ulation box (Figs. 3a and 3b). In Figure 3c, black lines
and red lines agree well with each other, but with some
fluctuations in black lines.

It should be noted that such fluctuations result from
the small particle numbers, rather than the imprecision

1 http://www.comsol.com/

of equation (10), because small particle numbers make
the macroscopic equivalent thermal dipole moment
locally nonuniform. To validate our explanation, we
keep the thermal conductivities and area fractions of
the three types of particles unchanged, and increase the
particle numbers fourfold. The results are presented in
Figures 3d–3f, and the fluctuations almost disappear as
expected.

We further discuss thermal illusion between parti-
cles with material anisotropy; see Figures 3g–3i. The
anisotropic thermal conductivity is expressed in cylindri-
cal coordinates whose origin is at the center of each par-
ticle. In Figure 3i, the agreement between black lines and
red lines validates the scheme with material anisotropy.

Finally, we discuss thermal illusion between more types
of particles with geometry anisotropy; see Figures 3j–3l.
There are four types of particles in Figure 3j. If we use
the core-shell scheme, four times of calculations may be
required to design four types of specific shells to realize
thermal illusion. In this work, once calculation is enough;
say, equation (10), because we consider the macroscopic
effect of the four types of particles, rather than the local
effect of a single type of particles. Therefore, our scheme
is powerful to achieve thermal illusion in many-particle
systems.

4 Laboratory experiments

According to the finite-element simulations in Figures 3j
and 3k, we also conduct corresponding laboratory exper-
iments; see Figure 4. The two samples are fabricated by
drilling air holes on a copper plate with laser cut. Trans-
parent plastic and foamed plastic (both insulated) are,
respectively, applied on the upper and lower surfaces to
reduce the infrared reflection and the thermal convection.
By using the infrared camera FLIR E60, we measure the
two samples between hot and cold baths; see Figures 4a
and 4b. The corresponding measured results are pre-
sented in Figures 4c and 4d, which agree well with each
other. Also, the experimental results (Figs. 4c and 4d)
show good agreement with the finite-element simulations
(Figs. 3j and 3k). So far, we may conclude that thermal
illusion with the concept of equivalent thermal dipole has
been validated by theory, finite-element simulations, and
laboratory experiments.

5 Discussion and conclusion

In the theoretical derivation to achieve thermal illusion,
we have ignored an inessential detail; say, the dipole-dipole
interaction. When writing down equation (1), we have
supposed that the matrix size is far larger than the par-
ticle size. However, when thermal particles (or equivalent
thermal dipoles) are big and become close to each other,
the dipole-dipole interaction will exert some influence
on equation (1). Fortunately, the periodic arrangement
ensures the certain distance between particles, and thus
the local fluctuations of particle distances are minimized
to the lowest extent [37].
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Fig. 3. Finite-element simulations of thermal illusion with (a–c, d–f) isotropic particles, (g–i) material anisotropic particles,
and (j–l) geometry-anisotropic particles. The simulation box is 20 × 20 cm2, and the dashed square is 10 × 10 cm2. The two
solid black lines are located at x = −6 and y = 6 cm, and the origin is at the center of each simulation box. The temperature of
the left (or right) boundary is set at 313 K (or 273 K), and the other boundaries are insulated. The thermal conductivities and
particles sizes are all designed according to equation (10). The thermal conductivities of the matrices in (a, b, d, e), (g, h), and
(j, k) are 200, 20, 400 Wm−1 K−1, respectively. The particle distances in (a, b, g, h, j, k) and (d, e) are 10 and 5 mm, respectively.
Other parameters are as follows. (a) 50 purple particles with κ1 = 400 Wm−1 K−1, r1 = 2.52 mm; 50 brown particles with
κ2 = 1 Wm−1 K−1, r2 = 4.37 mm. (b) 100 red particles with κ3 = 41 Wm−1 K−1, r3 = 3.57 mm. (d) 200 purple particles
with κ1 = 400 Wm−1 K−1, r1 = 1.26 mm; 200 brown particles with κ2 = 1 Wm−1 K−1, r2 = 2.19 mm. (e) 400 red particles
with κ3 = 41 Wm−1 K−1, r3 = 1.78 mm. (g) 50 purple particles with diag (400, 225) Wm−1 K−1, r1 = 2.52 mm; 50 brown
particles with diag (200, 50) Wm−1 K−1, r2 = 4.37 mm. (h) 100 red particles with diag (244, 61) Wm−1 K−1, r3 = 3.57 mm. (j)
25 purple particles with κ1 = 0.025 Wm−1 K−1, s1 = 2.93 mm, t1 = 1.95 mm; 25 brown particles with κ2 = 0.025 Wm−1 K−1,
s2 = 2.44 mm, t2 = 3.66 mm; 25 blue particles with κ3 = 0.025 Wm−1 K−1, s3 = 3.24 mm, t3 = 2.16 mm; 25 dark particles
with κ4 = 0.025 Wm−1 K−1, s4 = 2.61 mm, t4 = 3.91 mm. (k) 100 red particles with κ5 = 0.025 Wm−1 K−1, r5 = 2.82 mm.
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Fig. 4. Laboratory experiments for confirming the finite-
element simulations shown in Figures 3j and 3k. (a, b) are
the schematic diagrams showing two fabricated samples and
the experimental devices. The thermal conductivities and the
sizes are the same as those for Figures 3j and 3k, respectively.
(c, d) display the experimental measurement results of the sam-
ple shown in (a, b), respectively. Parameters: copper’s thermal
conductivity 400 Wm−1 K−1 and air’s thermal conductivity
0.025 Wm−1 K−1.

Nevertheless, here we only discuss the simplest square
lattice. It is just a beginning, and more complex lattices
remain to be studied, which may contain more interesting
points. For example, the rectangle lattice is characterized
by the lattice anisotropy, which may result in the different
macroscopic equivalent thermal dipole moment compared
with the square lattice. Certainly, the transient results
can also be expected, if we consider the density and heat
capacity appropriately [24].

In summary, we have established the relation between
a thermal particle and a thermal dipole, and realized
thermal illusion with the concept of equivalent thermal
dipole, namely setting the macroscopic equivalent ther-
mal dipole moments of two different systems to be the
same. We also demonstrate a clear physical image to
understand the famous Bruggeman theory. Theoretical
analysis is further validated by finite-element simulations
and laboratory experiments. Our mechanism is efficient
to handle many-particle problems, and has potential
applications in misleading infrared detection, manipulat-
ing heat flux, etc. The related conclusions can also be
directly extended to other diffusion fields, such as those
in magnetostatics [38–40] and electrostatics [41].
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Appendix A: Theory for three dimensions

The key to three-dimensional thermal illusion is to estab-
lish the relation between a three-dimensional thermal
particle and a three-dimensional thermal dipole. For this
purpose, we should extend equations (5), (7), and (8) to
three dimensions. The three-dimensional counterparts of
equations (1) and (2) are, respectively,

Tm = −K0ρ cos θ +
κp − κm
κp + 2κm

r3K0ρ
−2 cos θ + T0, (A.1)

T = −K0ρ cos θ +
Mh

4πκm
ρ−2 cos θ + T0, (A.2)

where the three-dimensional thermal dipole moment Mh

can also be described by equation (3).
We rewrite equation (A.1) according to the form of

equation (A.2),

Tm = −K0ρ cos θ +
M∗h

4πκm
ρ−2 cos θ + T0, (A.3)

where the equivalent thermal dipole moment (M∗h) in
three dimensions can be defined as

M∗h = 4πκm
κp − κm
κp + 2κm

r3K0. (A.4)

Equation (A.4) is the three-dimensional counterpart of
equation (5).

When considering three-dimensional mate-
rial anisotropy with thermal conductivity ←→κ p =
diag (κρρ, κθθ, κϕϕ) with κθθ = κϕϕ in spherical coor-
dinates (ρ, θ, ϕ), equation (A.4) can be extended
to

M∗h = 4πκm
vκρρ − κm
vκρρ + 2κm

r3K0, (A.5)

where v = −1/2 +
√

1/4 + 2κθθ/κρρ. Equation (A.5) is
the three-dimensional counterpart of equation (7).

On the other hand, when considering three-dimensional
geometry anisotropy of an ellipsoid particle (with the third
semiaxis w), equation (A.4) becomes

M∗h =
4

3
πκm

κp − κm
κpL+ κm (1− L)

stwK0, (A.6)
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where the horizontal shape factor L is given by

L =
stw

2

∫ ∞
0

da

(t2 + a)
√

(s2 + a) (t2 + a) (w2 + a)
.

(A.7)

Equations (A.6) and (A.7) are the three-dimensional
counterpart of equations (8) and (9), respectively.

Then, thermal illusion can be achieved when the
three-dimensional macroscopic equivalent thermal dipole
moments of j types of particles (with n1, n2, . . . , nj par-
ticles, respectively) and N − j types of particles (with
nj+1, nj+2, . . . , nN particles, respectively) are equal,

j∑
i=1

niM
∗
hi =

N∑
i=j+1

niM
∗
hi, (A.8)

where M∗hi can be calculated from equation (A.4), (A.5),
or (A.6) with corresponding parameters. Equation (A.8)
is the three-dimensional counterpart of equation (10).
In fact, the mathematical forms of equation (A.8) and
equation (10) are totally the same, only with different
calculation of M∗hi.
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