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Abstract. The remarkable capability to tailor material property has largely expanded the permittivity
range, even with negative value. However, permittivity, as an inherent property, may lack adaptive response
to nearby objects. To solve this problem, here we introduce the chameleon behavior from biology to elec-
trostatics. The essence of electrostatic chameleons can be concluded as intelligent metashells with adaptive
response to inside objects. The requirement of electrostatic chameleons is deduced by making the effective
permittivities of metashells only dependent on the permittivities of inside objects. By delicately design-
ing the anisotropic permittivities of metashells, we summarize two types of electrostatic chameleons with
distinct mechanisms. The theoretical analyses are validated by numerical simulations, which indicate that
the proposed metashells do work as expected. Such schemes have potential applications in camouflage,
self-adaption, etc. This work not only lays the theoretical foundation for electrostatic chameleons, but also
provides guidance for exploring other intelligent materials beyond chameleon.

1 Introduction

The range of material parameters has been largely
expanded with artificial structures, such as negative per-
mittivity [1], negative permeability [2], negative refraction
index [3–7], etc. However, these inherent parameters,
once designed, may lack the adaptive response to nearby
objects.

Recently, intellectualization has become one of the
research focuses of material science for the potential appli-
cations in optical and microwave devices, such as coding
metasurface [8,9], chameleonlike cloak [10], light-operated
device [11,12], invisible sensor [13,14], etc. Therefore, it
is urgent to solve the fundamental problem for realizing
intelligent parameters like permittivity.

Inspired by the natural phenomenon that chameleons
can adaptively change their color according to their
nearby environment, we expect to introduce this phe-
nomenon from biology to electrostatics. In other words,
electrostatic chameleons can adaptively change their per-
mittivities according to their nearby objects.

For this purpose, we study the electrostatic properties of
a fundamental core-shell structure which has been widely
explored [15–28]. Researches have found that by adjusting
geometry, anisotropy, and constituents of core-shell struc-
tures, many unique properties can be realized, such as
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partial resonance [15,16], nonlinear enhancement [17–19],
surface plasmon resonance [20–23], etc.

However, comparing with the previous researches on
core-shell structures, we first calculate the effective per-
mittivities of anisotropic shells when the components of
diagonal tensors are abnormal (εθθ/εrr < 0 for two dimen-
sions, and εθθ/εrr < −1/8 for three dimensions). With
the delicate design of tensorial permittivities, shells can
exhibit adaptive response to inside cores, and always pos-
sess the same permittivities as those of inside cores, thus
they are called as intelligent metashells, or chameleon
metashells.

2 Theory of electrostatic chameleons

We start from considering the effective permittivities of
electrostatic chameleons, for the key point focuses on the
adaptive permittivities. We consider the two-dimensional
(2D) system shown in Figure 1a, which is separated
into three regions. They are object (region I), chameleon
metashell (region II), and background (region III). The
tensorial permittivities of object, chameleon metashell,
and background are respectively ←→ε 2D

1 , ←→ε 2D
2 , and ←→ε 2D

3 .
We suppose that the object and background are isotropic,
and the chameleon metashell is anisotropic: ←→ε 2D

1 =

ε1
←→
I 2,
←→ε 2D

3 = ε3
←→
I 2, and ←→ε 2D

2 = diag (εrr, εθθ), where
←→
I 2 is the second-order identity tensor. The parameters
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are expressed in cylindrical coordinates (r, θ). We can
derive the effective permittivity of region I+II (denoted
by ε2De ) as

ε2De> = m1εrr
ε1 +m1εrr + (ε1 −m1εrr)

(√
p2D

)2m1

ε1 +m1εrr − (ε1 −m1εrr)
(√
p2D

)2m1
,

(1)

ε2De< = nεrr
ε1 + nεrr tan

(
n ln
√
p2D

)
nεrr − ε1 tan

(
n ln
√
p2D

) , (2)

where ε2De> (ε2De< ) is for εθθ/εrr > 0 (εθθ/εrr < 0). m1 =√
εθθ/εrr, n =

√
−εθθ/εrr, and p2D = (r1/r2)

2
is the area

fraction. Detailed derivation can be found in Part I of
Appendix A.

We calculate ε2De when εθθ/εrr respectively approaches
0+ and 0−, and find that they tend to the same value,

ε2De= = εrr
ε1 − εθθ ln

√
p2D

εrr − ε1 ln
√
p2D

, (3)

where ε2De= is for εθθ/εrr = 0.
As the name suggests, electrostatic chameleons should

adaptively change their effective permittivities (denoted
as ε2) according to inside object, which can be mathe-
matically expressed as

ε2 = ε1. (4)

Since the effective permittivity of region I or II is ε1, that
of region I + II has the only possibility to be

ε2De = ε1. (5)

Comparing equation (5) with equations (3) and (2),
we can obtain the requirement of electrostatic chameleons
as

εθθ/εrr ≈ 0 : εθθ ≈ 0 with εrr � ε1, (6)

εθθ/εrr < 0 :
√
−εθθ/εrr ln

√
p2D = −Z+π, (7)

where Z+ (= 1, 2, 3, . . .) is positive integers. Clearly,
equations (6) and (7) respectively make equations (3) and
(2) satisfy the requirement of equation (5).

Then we explore the electrostatic chameleons in three-
dimensional (3D) system shown in Figure 1d. Simi-
larly, the tensorial permittivities of object (regions I),
chameleon metashell (region II), and background
(region III) are respectively ←→ε 3D

1 , ←→ε 3D
2 , and ←→ε 3D

3 . We
suppose that the object and background are isotropic,
and the chameleon metashell is anisotropic: ←→ε 3D

1 =

ε1
←→
I 3,
←→ε 3D

3 = ε3
←→
I 3,←→ε 3D

2 = diag (εrr, εθθ, εϕϕ), where
←→
I 3 is the third-order identity tensor. The parameters

are written in spherical coordinates (r, θ, ϕ). We sup-
pose εθθ = εϕϕ for simplicity, and derive the effective

permittivity of region I + II (denoted as ε3De ),

ε3De> =εrr
u1 (ε1 − εrru2)− u2 (ε1 − εrru1)

(
3
√
p3D

)u1−u2

(ε1 − εrru2)− (ε1 − εrru1)
(

3
√
p3D

)u1−u2
,

(8)

ε3De< =εrr
4ε1v +

[
2ε1 +

(
1 + 4v2

)
εrr
]

tan
(
v ln 3
√
p3D

)
4εrrv − 2 (2ε1 + εrr) tan

(
v ln 3
√
p3D

) ,

(9)

where ε3De> (ε3De< ) is for εθθ/εrr > −1/8 (εθθ/εrr <

−1/8). u1, 2 =
(
−1±

√
1 + 8εθθ/εrr

)
/2, v =√

−1− 8εθθ/εrr/2, and p3D = (r1/r2)
3

is the vol-
ume fraction. Detailed calculations can be found in
Part II of Appendix A.

We calculate ε3De when εθθ/εrr approaches −1/8+ and
−1/8−, and they also tend to the same value,

ε3De= = εrr
4ε1 + (2ε1 + εrr) ln 3

√
p3D

4εrr − 2 (2ε1 + εrr) ln 3
√
p3D

, (10)

where ε3De= is for εθθ/εrr = −1/8.
We resort to equations (10) and (9) to realize electro-

static chameleons in three dimensions. For this realization,
equation (9) works, but equation (10) fails. Neverthe-
less, we find a pseudo electrostatic chameleon when
εθθ/εrr = 0, whose effective permittivity is

ε3De = εrr
ε1 3
√
p3D

εrr + ε1
(
1− 3
√
p3D

) , (11)

which is similar to the condition in two dimensions,
namely equation (3).

This can then be concluded as

εθθ/εrr ≈ 0: εrr � ε1, (12)

εθθ/εrr <−1/8:
(√
−1−8εθθ/εrr/2

)
ln 3
√
p3D = −Z+π,

(13)

where Z+ (= 1, 2, 3, . . .) is positive integers.
Equations (12) and (13) respectively make equa-

tions (11) and (9) become ε3De = 3
√
p3Dε1 and ε3De = ε1,

which is distinctly different from two dimensions. In other
words, equation (12) only works as a pseudo electrostatic
chameleon due to the extra constant 3

√
p3D.

So far, we may give a classification of electrostatic
chameleons. We define “type A” electrostatic chameleons
as those with εθθ/εrr ≈ 0, and here 0 is just a constant,
which is equal to the demarcation point in two dimen-
sions by accident. And we define “type B” electrostatic
chameleons as those with εθθ/κrr smaller than the demar-
cation point (εθθ/εrr < 0 for 2D and εθθ/εrr < −1/8 for
3D). We can then conclude that there are two types (type
A and type B) of electrostatic chameleons in two dimen-
sions (Fig. 1b), and only one type (type B) of electrostatic
chameleons in three dimensions (Fig. 1e). Nevertheless,
there is a pseudo type A electrostatic chameleons (due to
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Fig. 1. Electrostatic chameleons for (a–c2) two dimensions and (d–f2) three dimensions. (a, d) are schematic diagrams, and
(b, e) are classifications. (c1, c2, f1, f2) show the calculated effective permittivities ε2De (or ε3De ), as a function of ε1. Concrete
parameters: (c1) εθθ = 0.001, p = 0.25; (c2) εrr = −20 and Z+ = 1 in equation (7), p = 0.25; (f1) εθθ = 0.001, p = 0.125; (f2)
εrr = −40 and Z+ = 1 in equation (13), p = 0.125. The insets of (c1, c2, f1, f2) show the calculated effective permittivities ε2De
(or ε3De ), as a function of p2D (or p3D), where ε1 = 25 and the corresponding chameleon metashells are kept unchanged.

the extra constant 3
√
p3D) in three dimensions (Fig. 1e).

Therefore, type A electrostatic chameleons are related to
the dimension, but type B electrostatic chameleons are
general (namely, independent of the dimension). More-
over, type A electrostatic chameleons result from an
approximate solution (Fig. 1c1; bigger εrr is better), and
the phenomenon is almost independent of area fraction
excluding extremely small value (inset of Fig. 1c1). The
pseudo type A electrostatic chameleons also result from an
approximate solution (Fig. 1f1; bigger εrr is better), but

the phenomenon is dependent on volume fraction (inset
of Fig. 1f1). Differently, type B electrostatic chameleons
originate from an exact solution (Figs. 1c2 and 1f2), but
the phenomena are dependent on core fraction, especially
featured by the quasi-periodic variations with core frac-
tion (insets of Figs. 1c2 and 1f2). Therefore, the two
types (type A and type B) of chameleons possess distinct
mechanisms despite of the similar chameleon behavior.
To be mentioned, the highly anisotropic parameters of
type A electrostatic chameleons are similar to those in
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magnetostatics for realizing long-distance transfer [29] or
three-dimensional magnetic cloak [30].

3 Simulation of electrostatic chameleons

To validate the theory, we perform finite-element sim-
ulations based on the commercial software COMSOL
Multiphysics (http://www.comsol.com/).

3.1 Two-dimensional electrostatic chameleons

We first discuss the type A electrostatic chameleons. The
simulation box of Figures 2a–2f is separated into three
regions just like Figure 1a. Chameleon metashells, normal
shells, and comparative shells are respectively applied in
region II of Figures 2a, 2d; 2b, 2e; and 2c, 2f. The param-
eters of chameleon metashells echo with the blue line in
Figure 1c1. We observe the electric profile of background
(region III) to check whether the effective permittivity of
the metashell (region II) changes with the inside object
(region I). For the convenience of comparison, we set the
background (region III) to have the same permittivity as
the corresponding object (region I).

When the designed chameleon metashell reaches an
object (Fig. 2a), it can adaptively change its effective per-
mittivity according to inside object, which results in the
same electric profile in the background (region III) as the
comparative shell (Fig. 2c). However, the normal shell dis-
torts the background equipotential lines (Fig. 2b) due to
its different permittivity. We then change the permittivity
of the object, but keep the metashell unchanged (Fig. 2d).
As a result, the effective permittivity of the chameleon
metashell also adaptively changes, which results in the
same background equipotential lines as the comparative
shell (Fig. 2f). In this case, the normal shell fails to change
again (Fig. 2e).

We further extend the type A electrostatic chameleons
from three aspects: from uniform to non-uniform electric
fields, from isotropic to anisotropic objects, and from cir-
cular to arbitrary shapes. Chameleon metashells, normal
shells, and comparative shells are also respectively applied
in Figures 3a, 3d, 3g; 3b, 3e, 3h; and 3c, 3f, 3i. The same
background electric fields between Figures 3a, 3c (3d, 3f
or 3g, 3i) show that the chameleon metashells are robust
under more complicated conditions. However, the different
background electric fields between Figures 3b, 3c (3e, 3f or
3h, 3i) show that the normal shells fail to change their
permittivities accordingly.

We then discuss the type B electrostatic chameleons.
For brevity, we replace type A chameleon metashells in
Figures 2a, 2d and Figures 3a, 3d with type B chameleon
metashells, and keep the other parameters unchanged.
The parameters of chameleon metashells echo with the
black line in Figure 1c2. The same background electric
fields between Figure 4a and Figure 2c (Fig. 4b and Fig. 2f,
Fig. 4c and Fig. 3c, Fig. 4d and Fig. 3f) validate the
type B chameleon metashells. To be mentioned, the type
B chameleons are not suitable for non-circular shapes.

After considering the anisotropic objects in both type A
and type B electrostatic chameleons, equation (4) can thus

Fig. 2. Simulations of two-dimensional type A electrostatic
chameleons. White lines represent equipotential lines. The per-
mittivities of (a, d) chameleon metashells and (b, e) normal
shells are respectively diag (3200, 0.001) (in cylindrical coor-
dinate) and 15. The permittivities of object (Region I) and
background (Region III) are set to be the same, which are
respectively (a, b, c) 5 and (d, e, f) 50. The permittivities of
comparative shells in (c, f) are the same as those of the corre-
sponding objects. Other parameters: d0 = 20 cm; r1 = 3.5 cm;
and r2 = 7 cm.

be extended as

←→ε 2 =←→ε 1, (14)

under the requirement of equation (6) or (7).

3.2 Three-dimensional electrostatic chameleons

We discuss the pseudo type A electrostatic chameleons.
Similarly, chameleon metashells, normal shells, and com-
parative shells are applied in Figures 5a, 5d; 5b, 5e;
and 5c, 5f, respectively. For pseudo type A electrostatic

https://epjb.epj.org/
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Fig. 3. Extensions of two-dimensional type A electrostatic
chameleons. (a–c) Non-uniform electric fields generated by
point electric sources; (d–f) anisotropic objects; and (g–i)
arbitrary shapes. The permittivities of object/background are
(a–c, g–i) 5 and (d–f) [(3, 2), (2, 5)] (in Cartesian coordinates).
The comparative shells in (c, f, i) have the same permittivities
as the corresponding objects. Other parameters are the same
as those for Figure 2.

chameleons are not real chameleons (due to the extra
constant 3

√
p3D), here we set the background to have

3
√
p3D (= 0.5) times of permittivity as the correspond-

ing objects, except Figures 5c, 5f. The parameters of
chameleon metashells echo with the blue line in Fig-
ure 1f1. The same background electric fields between
Figures 5a, 5c (or Figs. 5d, 5f) validate the adaptive per-
mittivities of the pseudo type A chameleon metashells.
However, the different background electric fields between
Figures 5b, 5c (or Figs. 5e, 5f) show that normal shells fail
to change their permittivities.

We extend the pseudo type A electrostatic chameleons
from three aspects: from uniform to non-uniform elec-
tric fields, from isotropic to anisotropic objects, and from
circular to non-circular shapes. Chameleon metashells,
normal shells, and comparative shells are respectively
applied in Figures 6a, 6d, 6g; 6b, 6e, 6h; and 6c, 6f, 6i. The
same background electric fields between Figures 6a, 6c
(6d, 6f or 6g, 6i) show that the pseudo type A chameleon
metashells are robust under more realistic conditions.
However, the different background electric fields between
Figures 6b, 6c (6e, 6f or 6h, 6i) show that the normal
shells fail to change their permittivities accordingly. To
be mentioned, the pseudo type A chameleons are suit-
able for non-circular shapes, but not for arbitrary shapes
especially when the inner and outer boundaries of the
chameleon metashells are different.

Fig. 4. Simulations of two-dimensional type B electrostatic
chameleons. The chameleon metashells in (a–d) are εrr =−20
and Z+ = 1 in equation (7). The other parameters of (a, b, c, d)
are respectively the same as those of Figure 2a, Figure 2d,
Figure 3a, and Figure 3d.

Then we discuss the type B electrostatic chameleons.
The parameters of chameleon metashells echo with the
black line in Figure 1f2. For brevity, we replace pseudo
type A chameleon metashells in Figures 5a, 5d and
Figures 6a, 6d with type B chameleon metashells. For
type B electrostatic chameleons are real chameleons, here
we set the background to have the same permittivity as
the corresponding object. The same background electric
fields between Figure 7a and Figure 5c (Fig. 7b and
Fig. 5f, Fig. 7c and Fig. 6c, or Fig. 7d and Fig. 6f)
validate the type B chameleon metashells. To be men-
tioned, type B electrostatic chameleons are not suitable
for non-circular shapes.

After considering the anisotropic object in both pseudo
type A and type B electrostatic chameleons, equation (4)
can thus be extended as

←→ε 2 = 3
√
p3D
←→ε 1, (15)

←→ε 2 =←→ε 1, (16)

under the requirement of equation (12) or (13).

4 Discussion and conclusion

It is worth noting that negative permittivities are required
for fabricating type B chameleon metashells. For this
realization, we can refer to negative permeabilities in

https://epjb.epj.org/
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Fig. 5. Simulations of three-dimensional pseudo type
A electrostatic chameleons. The permittivities of (a, d)
chameleon metashells and (b, e) normal shells are respec-
tively diag (3200, 0.001, 0.001) (in cylindrical coordinate) and
15. The permittivities of background (Region III) are 3

√
p3D

(= 0.5) times of those of object (Region I), except (c, f), which
are respectively (a–c) 5 and (d–f) 50 for objects. The permit-
tivities of comparative shells and background in (c, f) are the
same as those of the corresponding objects. Other parameters:
d0 = 20 cm; r1 = 3.5 cm; and r2 = 7 cm.

magnetostatics realized by adding external current [31].
Similarly, negative permittivities can also be achieved by
adding external stimuli appropriately. In other words,
the type B chameleon metashells require active materi-
als (with external stimuli), whereas type A chameleon
metashells only require passive materials (without exter-
nal stimuli). From this point, type A chameleon metashells
(passive material with adaptive response) may be more
counterintuitive than type B chameleon metashells (active
material with adaptive response).

Fig. 6. Extensions of three-dimensional pseudo type A elec-
trostatic chameleons. (a–c) non-uniform electric fields gen-
erated by point electric sources; (d–f) anisotropic objects;
and (g–i) non-circular shapes (5×5×5 and 10×10×10 cm for
inner and outer boundaries of the cubic chameleon metah-
sell). The permittivities of background (Region III) are
3
√
p3D (= 0.5) times of those of object (Region I), except

(c, f, i), which are respectively (a–c, g–i) 5 and (d–f)
[(3, 2, 0), (2, 5, 0), (0, 0, 5)] (in Cartesian coordinates) for
objects. The permittivities of comparative shells and back-
ground in (c, f, i) are the same as those of the corresponding
objects. Other parameters are the same as those for Figure 5.

Moreover, this work may reveal some clues for unique
properties of low-dimensional materials in macroscopic
scale. Generally speaking, functional devices can be natu-
rally extended from two dimensions to three dimension
with some changes of parameters and structures, such
as negative refraction index [5,7]. However, it is differ-
ent when discussing type A chameleon metashells which
cannot be directly extended to three dimensions. Such
results may provide clues for studying low-dimensional
transportation in macroscopic scale.

This work also first derives the effective permittivity
under the demarcation point (εθθ/εrr < 0 for 2D and
εθθ/εrr < −1/8 for 3D). Especially, the quasi-periodic
variation with core fraction (insets of Figs. 1c2, 1f2) is
first revealed in this work, which are dramatically differ-
ent from the well-known effective medium theories like
the Maxwell-Garnett formula [32] and the Bruggeman
formula [33].

In summary, the electrostatic chameleons proposed in
this work can work adaptively for different inside objects.
Such chameleon metashells have potential applications
in camouflage, self-adaptivity, etc. This work also offers

https://epjb.epj.org/
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Fig. 7. Simulations of three-dimensional type B electro-
static chameleons. The chameleon metashells in (a–d) are
εrr =−40 and Z+ = 1 in equation (13). The other parameters
of (a, b, c, d) are respectively the same as those of Figure 5a,
Figure 5d, Figure 6a, and Figure 6d, except the permittivi-
ties of background, which are set to be the same as those of
corresponding objects.

guidance for magnetostatic camouflage [31,34,35], and
designing similar chameleon behavior in magnetostatics
where permeabilities play the same role as permittiv-
ities in electrostatics. The chameleon behavior of per-
mittivities and permeabilities may further contributes
to the manipulation of electromagnetic wave, such as
illusion [36].
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Appendix A

Part I: Theory for two dimensions

We consider the passive Gauss’s law to derive the effective
permittivity,

∇ · (−←→ε ∇φ) = 0, (A.1)

where←→ε and φ are respectively tensorial permittivity and
electric potential.

In region II, equation (A.1) can be rewritten in cylin-
drical coordinates as

1

r

∂

∂r

(
rεrr

∂φ2D2
∂r

)
+

1

r

∂

∂θ

(
εθθ

∂φ2D2
r∂θ

)
= 0, (A.2)

where φ2D2 is the electric potential in region II. φ2D1 and
φ2D3 are defined by analogy.

The general solution of equation (A.2) is

φ2D2> = A2D
0> +B2D

0> ln r

+

∞∑
i=1

[
A2D
i> sin (iθ) +B2D

i> cos (iθ)
]
rim1

+

∞∑
j=1

[
C2D
j> sin (jθ) +D2D

j> cos (jθ)
]
rjm2 , (A.3)

φ2D2< = A2D
0< +B2D

0< ln r

+

∞∑
i=1

[
A2D
i< sin (iθ) +B2D

i< cos (iθ)
]

cos (in ln r)

+

∞∑
j=1

[
C2D
j< sin (jθ) +D2D

j< cos (jθ)
]

sin (jn ln r) ,

(A.4)

where φ2D2> (φ2D2<) is for εθθ/εrr > 0 (εθθ/εrr < 0). m1, 2 =

±
√
εθθ/εrr, and n =

√
−εθθ/εrr. Here εθθ/εrr = 0 is the

demarcation point.
The general solution in region I (φ2D1 ) or III (φ2D3 ) is the

right side of equation (A.3) for m1, 2 = ±1. As a result,
we can obtain φ2D3 as

φ2D3 = A2D
0 +B2D

1 r cos θ +D2D
1 r−1 cos θ. (A.5)

The undetermined coefficients in φ2D1 , φ2D2 and φ2D3 can
be determined by the following boundary conditions,

φ2D1 <∞,

φ2D1 (r1) = φ2D2 (r1) ,

φ2D2 (r2) = φ2D3 (r2) ,(
−ε1∂φ2D1 /∂r

)
r1

=
(
−εrr∂φ2D2 /∂r

)
r1
,(

−εrr∂φ2D2 /∂r
)
r2

=
(
−ε3∂φ2D3 /∂r

)
r2
,

∇φ2D3 (r →∞) = ∇φ0,

(A.6)

https://epjb.epj.org/
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where ∇φ0 represents the external uniform electric
gradient.

By setting D2D
1 of φ2D3 as zero to ensure the background

electric field undistorted, we can derive the effective per-
mittivity of region I + II (denoted by ε2De ) as equations (1)
and (2).

Part II: Theory for three dimensions

Compared with two dimensions, electrostatic chameleons
in three dimensions possess different properties. Consid-
ering the axial symmetry εθθ = εϕϕ, φ is independent
of ϕ.

In region II, equation (A.1) can be rewritten in spherical
coordinates as

1

r2
∂

∂r

(
r2εrr

∂φ3D2
∂r

)
+

1

r sin θ

∂

∂θ

(
sin θεθθ

∂φ3D2
r∂θ

)
= 0,

(A.7)

where φ3D2 is the electric potential in region II. φ3D1 and
φ3D3 are defined by analogy.

The general solution of equation (A.7) is

φ3D2≥ = A3D
0≥ +B3D

0≥ r
−1

+

∞∑
i=1

(
A3D
i≥ r

s1 +B3D
i≥ r

s2
)
Pi (cos θ) , (A.8)

φ3D2∼ = A3D
0∼ +B3D

0∼ r
−1

+

j∑
i=1

(
A3D
i∼ r

s1 +B3D
i∼ r

s2
)
Pi (cos θ)

+

∞∑
i=j+1

r−1/2
[
A3D
i∼ cos(t ln r) +B3D

i∼ sin(t ln r)
]

×Pi (cos θ) , (A.9)

φ3D2< = A3D
0< +B3D

0< r
−1

+

∞∑
i=1

r−1/2
[
A3D
i< cos(t ln r) +B3D

i< sin(t ln r)
]

×Pi (cos θ) , (A.10)

where φ3D2≥ is for εθθ/εrr ≥ 0, φ3D2∼ is for 0 > εθθ/εrr >

−1/8, and φ3D2< is for εθθ/εrr < −1/8. The indexes of

s1,2 =
(
−1±

√
1 + 4i (i+ 1) εθθ/εrr

)
/2, the indexes of

t =
√
−1− 4i (i+ 1) εθθ/εrr/2, and the index of j =

Int
[(
−1 +

√
1− εrr/εθθ

)
/2
]
, where i is the summation

index in equations (A.8)–(A.10), and Int [· · · ] is the
integral function with respect to . . . Pi is Legendre poly-
nomials. We also find that equations (A.8) and (A.9) are
essentially the same under the similar boundary condi-
tions equation (A.6), for we only care about the term of
i = 1. Therefore, εθθ/εrr = −1/8 is the real demarcation
point.

The general solution in region I (φ3D1 ) or III (φ3D3 ) is
the right side of equation (A.8) for s1 = 1 and s2 = −2.

As a result, we can obtain φ3D3 as

φ3D3 = A3D
0 +A3D

1 r cos θ +B3D
1 r−2 cos θ. (A.11)

By setting B3D
1 of φ3D3 as zero to ensure the background

electric field undistorted, we can derive the effective per-
mittivity of region I + II (denoted by ε3De ) as equations (8)
and (9).
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