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Negative Thermal Transport in Conduction and Advection
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Negative refractive index has drawn a great deal of attention due to its unique properties and practical applications
in wave systems. To promote the related physics in thermotics, here we manage to coin a complex thermal
conductivity whose imaginary part corresponds to the real part of complex refractive index. Therefore, the thermal
counterpart of negative refractive index is just negative imaginary thermal conductivity, which is featured by the
opposite directions of energy flow and wave vector in thermal conduction and advection, thus called negative
thermal transport herein. To avoid violating causality, we design an open system with energy exchange and
explore three different cases to reveal negative thermal transport. We further provide experimental suggestions
with a solid ring structure. All finite-element simulations agree with theoretical analyses, indicating that negative
thermal transport is physically feasible. These results have potential applications such as designing the inverse
Doppler effect in thermal conduction and advection.
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Negative refraction is one of the most attract-
ing phenomena in wave systems, which was first
revealed with simultaneously negative permeability
and permittivity.[1] With the proposal of metal wire
arrays[2] and split rings,[3] negative refractive index
was soon designed and fabricated,[4−6] which gave
birth to wide applications such as breaking diffrac-
tion limit.[7−9] One representative property of nega-
tive refractive index is the opposite directions of en-
ergy flow (or Poynting vector) and wave vector [see
Fig. 1(a)]. Based on this property, related phenomena
were revealed intensively, such as the inverse Doppler
effect,[10] the inverse Cerenkov radiation,[11] and the
abnormal Goos–Hanschen shift.[12]
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Fig. 1. Comparison between (a) wave system and (b) dif-
fusion system. Here 𝑛 and 𝜅 denote the complex refractive
index and the complex thermal conductivity, respectively.
𝐽 and 𝛽 denote the energy flow and the wave vector, re-
spectively.

Similar refractive phenomena were also studied
with thermal wave generated by a time-periodic heat
source.[13] Moreover, multilayered structures were also
proposed to guide heat flow,[14−17] yielding practi-

cal applications such as thermal lens[18] and thermal
cloaks.[19] These studies made an attempt to connect
thermal phenomena and electromagnetic phenomena.
However, some basic concepts are still ambiguous, es-
pecially the correspondence between thermal conduc-
tivity and refractive index.

To promote the related physics in thermotics with
a clear physical picture, here we manage to coin a
complex thermal conductivity 𝜅 as the thermal coun-
terpart of complex refractive index 𝑛 (see Fig. 1). The
imaginary part of complex thermal conductivity has
an analogy of the real part of complex refractive index.
Therefore, the thermal counterpart of negative refrac-
tive index is just negative imaginary thermal conduc-
tivity, which is characterized by the opposite direc-
tions of energy flux 𝐽 and wave vector 𝛽, thus called
negative thermal transport. We design an open sys-
tem with energy exchange to observe negative thermal
transport, and further provide experimental sugges-
tions with a three-dimensional solid ring structure. All
theoretical analyses and finite-element simulations in-
dicate that negative thermal transport is physical. Let
us start from coining complex thermal conductivity.

Thermal conduction-advection process is domi-
nated by the famous equation

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ ∇ · (−𝜎∇𝑇 + 𝜌𝐶𝑣𝑇 ) = 0, (1)

where 𝜌, 𝐶, 𝜎, 𝑣, 𝑇 , and 𝑡 are the density, heat capac-
ity, thermal conductivity, convective velocity, temper-
ature, and time, respectively. Equation (1) indicates
the energy conservation of thermal conduction and ad-
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vection. We assume that the convective term (𝜌𝐶𝑣𝑇 )
results from the motion of solid, so density and heat
capacity can be seen as two constants which do not
depend on time or temperature.[20,21] Therefore, the
mass and momentum conservations of thermal advec-
tion are naturally satisfied.

To proceed, we apply a plane-wave solution for
temperature,[20−22]

𝑇 = 𝐴0𝑒
𝑖(𝛽·𝑟−𝜔𝑡) + 𝑇0, (2)

where 𝐴0, 𝛽, 𝑟, 𝜔, and 𝑇0 are the amplitude, wave vec-
tor, position vector, frequency, and reference temper-
ature of wave-like temperature profile, respectively;
𝑖 =

√
−1 is imaginary unit. Only the real part

of Eq. (2) makes sense. We substitute Eq. (2) into
Eq. (1), and derive a dispersion relation as follows:

𝜔 = 𝑣 · 𝛽 − 𝑖
𝜎𝛽2

𝜌𝐶
. (3)

With the wave-like temperature profile described by
Eq. (2), we can derive ∇𝑇 = 𝑖𝛽𝑇 (𝑇0 is neglected for
brevity). Then, Eq. (1) can be rewritten as

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ ∇ · (−𝑖𝜎𝛽𝑇 + 𝜌𝐶𝑣𝑇 ) = 0. (4)

With the mass conservation of thermal advection, we
can obtain ∇ · (𝜌𝑣) = 0 or ∇ · 𝑣 = 0 (with 𝜌 being
a constant). Meanwhile, 𝛽 is a constant vector, so
Eq. (4) can be reduced to

𝜌𝐶
𝜕𝑇

𝜕𝑡
− 𝑖𝜎𝛽 · ∇𝑇 + 𝜌𝐶𝑣 · ∇𝑇 = 0, (5)

which can be further reduced with ∇𝑇 = 𝑖𝛽𝑇 to

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ 𝜎𝛽2𝑇 + 𝑖𝜌𝐶𝑣 · 𝛽𝑇 = 0. (6)

Now, it is natural to coin a complex thermal conduc-
tivity 𝜅 as

𝜅 = 𝜎 + 𝑖
𝜌𝐶𝑣 · 𝛽

𝛽2
, (7)

with which Eq. (6) can be simplified to

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ 𝜅𝛽2𝑇 = 0. (8)

With ∇𝑇 = 𝑖𝛽𝑇 , Eq. (8) is equivalent to the familiar
equation of thermal conduction,

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ ∇ · (−𝜅∇𝑇 ) = 0. (9)

Clearly, the thermal conduction-advection equation
(1) is converted to the complex thermal conduction
equation (9) with a complex thermal conductivity
(7). Although thermal conductivity is generally de-
fined by fixing moving parts (advection) as zero, here

advection can be mathematically regarded as a com-
plex form of conduction. That is, conduction and
advection are mathematically unified within a con-
ductive framework (despite different physical mech-
anisms). Therefore, coining complex thermal conduc-
tivity makes sense as long as treating advection as a
complex form of conduction.

Substituting Eq. (2) into Eq. (9), we can derive the
dispersion relation

𝜔 = −𝑖
𝜅𝛽2

𝜌𝐶
= 𝑣 · 𝛽 − 𝑖

𝜎𝛽2

𝜌𝐶
, (10)

which is in accordance with the result of Eq. (3), indi-
cating that complex thermal conductivity is physical.

To understand the complex frequency 𝜔, we sub-
stitute Eq. (10) into Eq. (2), and the wave-like temper-
ature profile becomes

𝑇 = 𝐴0𝑒
Im(𝜔)𝑡𝑒𝑖[𝛽·𝑟−Re(𝜔)𝑡] + 𝑇0. (11)

Obviously, Re(𝜔) and Im(𝜔) determine propagation
and dissipation, respectively. Meanwhile, Re(𝜔) and
Im(𝜔) are related to Im(𝜅) and Re(𝜅), respectively.
In other words, Re(𝜅) and Im(𝜅) are related to dis-
sipation and propagation, respectively. The physical
connotation can be clearly understood with Fig. 1(b).
Positive (or negative) Re(𝜅) means loss (or gain), in-
dicating the amplitude decrement (or increment) of
wave-like temperature profile. Im(𝜅) is of our inter-
est, which is discussed later.

We further confirm complex thermal conductivity
in a thermal conduction-advection system with COM-
SOL MULTIPHYSICS (http://www.comsol.com/).
The system is shown in Fig. 2(a), which has width
𝐿 and height 𝐻. Left and right ends are set under a
periodic boundary condition. Then, the wave vector
can only take on discrete values, say, 𝛽 = 2𝜋𝑚/𝐿 with
𝑚 being any positive integers. We take on 𝑚 = 5, and
initial temperature is set at 𝑇 = 40 cos(𝛽𝑥) + 323 K
[see Figs. 2(b) and 2(f)].

We discuss two cases with 𝑣||𝛽 [see Figs. 2(b)–2(e)]
and 𝑣⊥𝛽 [see Figs. 2(f)–2(i)]. When 𝑣||𝛽, Im(𝜅) ap-
pears due to 𝑣 ·𝛽 ̸= 0, as predicted by Eq. (7). There-
fore, propagation occurs and the period of wave-like
temperature profile is 𝑡0 = 2𝜋/Re(𝜔) = 2𝜋/(𝑣 · 𝛽) =
100 s, as predicted by Eq. (10). The wave-like temper-
ature profiles at 𝑡 = 0.5𝑡0 = 50 s and 𝑡 = 𝑡0 = 100 s are
shown in Figs. 2(c) and 2(d), respectively. The tem-
perature distributions along the 𝑥 axis in Figs. 2(b)–
2(d) are plotted in Fig. 2(e). Clearly, the wave-like
temperature profile has amplitude decrement because
of the positive Re(𝜅). Meanwhile, the wave-like tem-
perature profile propagates along the 𝑥 axis due to the
positive Im(𝜅). After propagating for a period (100 s),
the wave-like temperature profile approximately gains
a phase difference of 2𝜋, thus going back to the initial
position [see Figs. 2(b) and 2(d)].
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When 𝑣⊥𝛽, Im(𝜅) vanishes due to 𝑣 · 𝛽 = 0.
Therefore, propagation does not occur, and the pe-
riod is 𝑡0 = 2𝜋/Re(𝜔) = 2𝜋/(𝑣 · 𝛽) = ∞ s, as pre-
dicted by Eq. (10). The wave-like temperature profiles
at 𝑡 = 50 s and 𝑡 = 100 s are presented in Figs. 2(g)
and 2(h), respectively. The temperature distribu-
tions along the 𝑥 axis in Figs. 2(f)–2(h) are plotted
in Fig. 2(i). The wave-like temperature profile has
also amplitude decrement due to the positive Re(𝜅).
However, the wave-like temperature profile does not
propagate because of the zero Im(𝜅). Therefore, the
behaviors of thermal conduction and advection can be
well described by using complex thermal conductivity.
When wave vector and convective velocity are with an
arbitrary angle 𝜃, the velocity component 𝑣 cos 𝜃 con-
tributes to propagation.

T
 (

K
)

x (m) x (m)

(a)

(b)

(c)

(d)

(e) (i)

(f)

(g)

(h)

t=0 s

t=50 s

t=100 s

t=0 s

t=0 s

t=50 s

t=100 s

T
 (

K
)

363

283

P
B

C

P
B

C

Insulated

Insulated

v v

L

Hx

z

283

303

323

343

363

-0.3 -0.1 0.1 0.3 -0.3 -0.1 0.1 0.3

t=50 s

t=100 s

Fig. 2. (a) Schematic diagram. Temperature evolu-
tions with (b)–(e) 𝑣||𝛽 and (f)–(i) 𝑣⊥𝛽. Parameters:
𝐿 = 0.5m, 𝐻 = 0.25m, 𝜌𝐶 = 106 J·m−3K−1, 𝜎 =
1W·m−1K−1, and 𝑣 = 1mm/s. PBC: periodic bound-
ary condition.

We further discuss the energy flow in Figs. 2(b)–
2(d). Relative energy flow 𝐽 ′ can be calculated with
periodicity average,

𝐽 ′ =
1

𝜆

∫︁ 𝜆

0

(−𝜅∇𝑇 )𝑑𝑥 = 0, (12)

where 𝜆 = 2𝜋/𝛽 is wavelength. Here we only take on
the real part of 𝐽 ′ because the imaginary part does not
make sense. Although conductive flow is irrelevant
to reference temperature, convective flow (𝜌𝐶𝑣𝑇 ) is
closely associated with reference temperature.[23−27]

Therefore, absolute energy flow 𝐽 is

𝐽 = 𝜌𝐶𝑣𝑇0. (13)

In what follows, we discuss absolute energy flow and
neglect the expression of absolute for brevity. Clearly,
𝐽 and 𝑣 have the same direction. In other words, only
thermal advection contributes to energy flow. As we
can imagine from Figs. 2(b)–2(d), thermal advection
results in the motion of wave-like temperature profile,
so the direction of wave vector 𝛽 follows that of con-
vective velocity 𝑣, yielding positive thermal transport
[Im(𝜅) > 0; see Fig. 1(b)]. To some extent, positive
thermal transport is the result of causality, so neg-
ative thermal transport [Im(𝜅) < 0; see Fig. 1(b)] is
unique.
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Fig. 3. Two-dimensional negative thermal transport. (a)
Schematic diagram with 𝑎u = 𝑎l = 2mm, 𝑎i = 1mm, 𝐿 =
0.5m, 𝜎u = 𝜎l = 10W·m−1K−1, 𝜎i = 0.1W·m−1K−1,
and 𝜌u𝐶u = 𝜌l𝐶l = 𝜌i𝐶i = 106 J·m−3K−1. These param-
eters lead to 𝑔/𝛽 = 4mm/s. (b) 𝑣u = −𝑣l = 5mm/s.
(c) 𝑣u = 0.5mm/s and 𝑣l = −1.5mm/s. (d) 𝑣u =
−𝑣l = 1mm/s. Circles and stars denote the trajectories
of max[𝑇u] and max[𝑇l], respectively.

It may be difficult to reveal negative thermal trans-
port in an isolated system like Fig. 2(a), so we consider
an open system [see Fig. 3(a)], where an intermediate
layer allows heat exchange between upper and lower
layers. The complex thermal conductivities of the up-
per layer (𝜅u) and the lower layer (𝜅l) are expressed
as

𝜅u = 𝜎u + 𝑖
𝜌u𝐶u𝑣u · 𝛽u

𝛽2
u

, (14a)

𝜅l = 𝜎l + 𝑖
𝜌l𝐶l𝑣l · 𝛽l

𝛽2
l

, (14b)

where the subscripts u and l denote the parameters in
the upper and lower layers, respectively. We set the
wave-like temperature profiles in the upper layer 𝑇u

and in the lower layer 𝑇l as

𝑇u = 𝐴u𝑒
𝑖(𝛽u·𝑥−𝜔𝑡) + 𝑇0, (15a)

𝑇l = 𝐴l𝑒
𝑖(𝛽l·𝑥−𝜔𝑡) + 𝑇0. (15b)

The heat exchange between the upper and lower lay-
ers is along the 𝑧 axis, which is not of our concern.
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Therefore, the energy flows along the 𝑥 axis in the up-
per layer 𝐽u and in the lower layer 𝐽l can be calculated
by

𝐽u = 𝜌u𝐶u𝑣u𝑇0, (16a)

𝐽l = 𝜌l𝐶l𝑣l𝑇0. (16b)

Clearly, the directions of energy flow in the upper and
lower layers are opposite due to 𝑣u = −𝑣l.

The thermal conduction-advection processes in the
upper and lower layers can be described by the com-
plex thermal conduction equations

𝜌u𝐶u
𝜕𝑇u

𝜕𝑡
+ ∇ · (−𝜅u∇𝑇u) = 𝑠u, (17a)

𝜌l𝐶l
𝜕𝑇l

𝜕𝑡
+ ∇ · (−𝜅l∇𝑇l) = 𝑠l, (17b)

where 𝑠u and 𝑠l are the two heat sources, reflect-
ing the heat exchange between the upper and lower
layers.[20,21] Since the three layers in Fig. 3(a) are thin
enough, i.e., (𝐿 ≫ 𝑎u,i,l), the temperature variance
along the 𝑧 axis can be neglected, yielding 𝜕2𝑇/𝜕𝑧2 =
0. The energy flow from the lower layer to the upper
layer 𝑗u can be calculated by 𝑗u = −𝜎i(𝑇u − 𝑇l)/𝑎i,
where 𝜎i and 𝑎i are the thermal conductivity and
width of stationary intermediate layer, respectively.
It is also reasonable to suppose that energy flow is
uniformly distributed in the upper layer due to thin
thickness, so the heat source in the upper layer 𝑠u can
be expressed as 𝑠u = 𝑗u/𝑎u = −𝜎i(𝑇u − 𝑇l)/(𝑎i𝑎u),
where 𝑎u is the width of upper layer. Similarly,
the heat source in lower layer 𝑠l can be derived as
𝑠l = 𝑗l/𝑎l = −𝜎i(𝑇l − 𝑇u)/(𝑎i𝑎l), where 𝑎l is the width
of lower layer. With these analyses, Eqs. (17a) and
(17b) can be reduced to

𝜌u𝐶u
𝜕𝑇u

𝜕𝑡
− 𝜅u

𝜕2𝑇u

𝜕𝑥2
= ℎu (𝑇l − 𝑇u) , (18a)

𝜌l𝐶l
𝜕𝑇l

𝜕𝑡
− 𝜅l

𝜕2𝑇l

𝜕𝑥2
= ℎl (𝑇u − 𝑇l) , (18b)

where ℎu = 𝜎i/(𝑎i𝑎u) and ℎl = 𝜎i/(𝑎i𝑎l), reflecting the
exchange rate of heat energy. We take on the same ma-
terial parameters of the upper and lower layers, say,
𝜎u = 𝜎l(= 𝜎), 𝜌u𝐶u = 𝜌l𝐶l(= 𝜌𝐶), 𝑎u = 𝑎l(= 𝑎), and
ℎu = ℎl(= ℎ). We also suppose 𝑣u = −𝑣l(= 𝑣) and
𝛽u = 𝛽l(= 𝛽), thus yielding 𝜅u = �̄�l(= 𝜅), where �̄�l is
the conjugate of 𝜅l. Substituting Eq. (15) into Eq. (18)
yields an eigenequation �̂�𝜓 =𝜔𝜓, where the Hamil-
tonian �̂� reads

�̂� =

[︃
−𝑖

(︀
𝑔 + 𝜂𝛽2

)︀
𝑖𝑔

𝑖𝑔 −𝑖
(︀
𝑔 + 𝜂𝛽2

)︀ ]︃
, (19)

where 𝜂 = 𝜅/ (𝜌𝐶) and 𝑔 = ℎ/ (𝜌𝐶). The eigenvalue
of Eq. (19) is

𝜔± = −𝑖
[︁
𝑔 + Re(𝜂)𝛽2 ±

√︁
𝑔2 − Im2(𝜂)𝛽4

]︁
, (20)

where Re(𝜂) = 𝜎/(𝜌𝐶) and Im(𝜂)𝛽2 = 𝑣𝛽.
With Eq. (20), we can obtain three different cases

of negative thermal transport. We discuss the first
case with 𝑔2 − Im2(𝜂)𝛽4 < 0, say, 𝑣 > 𝑔/𝛽. The cor-
responding eigenvector is

𝜓+ =
[︀
1, 𝑒𝑖𝜋/2−𝛿

]︀𝜍
, (21a)

𝜓− =
[︀
1, 𝑒𝑖𝜋/2+𝛿

]︀𝜍
, (21b)

where 𝛿 = cosh−1[Im(𝜂)𝛽2/𝑔], and 𝜍 denotes trans-
pose. The eigenvectors in Eqs. (21a) and (21b) in-
dicate that the wave-like temperature profiles in the
upper and lower layers move with a constant phase
difference of 𝜋/2 but with different amplitudes. We
take on 𝛽 = 2𝜋𝑚/𝐿 with 𝑚 = 1 in the following.
The initial wave-like temperature profiles in the up-
per and lower layers are set as the eigenvector de-
scribed by Eq. (21b), say, 𝑇u = 40 cos(𝛽𝑥)+323 K and
𝑇l = 𝑒𝛿40 cos(𝛽𝑥+𝜋/2) + 323 K. We track the motion
of maximum temperature in the upper and lower lay-
ers, max[𝑇u] and max[𝑇l], to observe the directions
of wave vector. Since the amplitude of the wave-like
temperature profile in the lower layer (with 𝑒𝛿 > 1)
is larger than that in the upper layer, the directions
of wave vector in the upper and lower layers are both
leftward. Therefore, negative thermal transport oc-
curs in the upper layer, and the transport in the lower
layer is still positive [see Fig. 3(b)].

We discuss the second case with 𝑔2−Im2(𝜂)𝛽4 > 0,
say, 0 < 𝑣 < 𝑔/𝛽. The corresponding eigenvector is

𝜓+ =
[︀
1, 𝑒𝑖(𝜋−𝛼)

]︀𝜍
, (22a)

𝜓− =
[︀
1, 𝑒𝑖𝛼

]︀𝜍
, (22b)

where 𝛼= sin−1[Im(𝜂)𝛽2/𝑔]. The eigenvectors in
Eq. (22) indicate that the wave-like temperature pro-
files in the upper and lower layers are motionless with
a constant phase difference of 𝜋−𝛼 or 𝛼. To make the
wave-like temperature profiles move, we give the sys-
tem a reference velocity 𝑣0, resulting in 𝑣u = 𝑣′u + 𝑣0
and 𝑣l = 𝑣′l + 𝑣0, where 𝑣′u and 𝑣′l are original con-
vective velocities. This operation does not affect the
essence of eigenvectors in Eqs. (22a) and (22b), and
only gives a reference velocity 𝑣0 to wave-like tem-
perature profiles. We set the initial wave-like tem-
perature profiles in the upper and lower layers to
be the eigenvector described by Eq. (22b), say, 𝑇u =
40 cos(𝛽𝑥) + 323 K and 𝑇l = 40 cos(𝛽𝑥 + 𝛼) + 323 K.
We also take on 𝑣0 = −0.5𝑣′u, so the wave-like tem-
perature profiles in upper and lower layers still main-
tain a constant phase difference of 𝛼 but with leftward
motion. The trajectories of max[𝑇u] and max[𝑇l] are
presented in Fig. 3(c). Clearly, negative thermal trans-
port occurs in upper layer.

These two cases are both related to eigenvectors,
indicating that negative thermal transport does occur
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in one layer (say, upper layer). However, if we regard
the upper and lower layers as a whole, thermal trans-
port will be still positive. To go further, we explore
the third case which is related to non-eigenvectors and
their dynamics, to reveal negative thermal transport
in both the upper and lower layers. For this purpose,
we set the initial wave-like temperature profiles by
adding the eigenvector described by Eq. (22b) with an
extra phase 𝛾, say, 𝜓′

− =
[︀
1, 𝑒𝑖(𝛼+𝛾)

]︀𝜍
, yielding 𝑇u =

40 cos(𝛽𝑥)+323 K and 𝑇l = 40 cos(𝛽𝑥+𝛼+𝛾)+323 K.
In this way, even if we do not give a reference veloc-
ity to the system, the wave-like temperature profile
still moves for reaching eigenvector. One principle of
evolution route is to make temperature profile decay
as slowly as possible. Therefore, the eigenvector 𝜓+

with a phase difference of 𝜋−𝛼 described by Eq. (22a)
becomes a key due to its large decay rate [say, the 𝜔+

of Eq. (20)]. The evolution route should try to avoid
𝜓+ to survive longer. When 𝛾 ∈ (0, 𝜋 − 2𝛼), negative
thermal transport will not make the temperature pro-
file go through 𝜓+, but positive thermal transport will
make the temperature profile go through 𝜓+ twice.
Therefore, evolution route naturally chooses negative
thermal transport in both the upper and lower lay-
ers to decay more slowly [see Fig. 3(d)]. Nevertheless,
after reaching eigenvector, the wave-like temperature
profile keeps motionless, so negative thermal transport
is no longer in existence. In other words, negative
thermal transport is transient in both the upper and
lower layers.
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Fig. 4. Experimental suggestions with a three-
dimensional solid ring structure. (a) Schematic diagram
with 𝑟1 = 80mm and 𝑟2 = 82mm. Other parameters are
kept the same as those for Fig. 3(a). (b) 𝛺u = −𝛺l =
0.063 rad/s. (c) 𝛺u = 0.006 rad/s and 𝛺l = −0.019 rad/s.
(d) 𝛺u = −𝛺l = 0.013 rad/s.

We also suggest experimental demonstration with
a three-dimensional solid ring structure [see Fig. 4(a)],
which can naturally meet the requirement of periodic
boundary condition. The upper ring (with width 𝑎u)

and the lower ring (with width 𝑎l) rotate with opposite
angular velocities (𝛺u and 𝛺l), which are connected
by a stationary intermediate layer (with width 𝑎i).
The inner and outer radii of the ring structure are
𝑟1 and 𝑟2, respectively. Similar to two dimensions,
we track max[𝑇u] and max[𝑇l] on the interior edge
of the solid ring structure. The parametric settings
for Figs. 4(b)–4(d) are basically the same as those for
Figs. 3(b)–3(d), respectively. Therefore, the results
are also similar. Negative thermal transport occurs
in the upper ring of Figs. 4(b) and 4(c), and occurs
in both the upper and lower rings of Fig. 4(d). The
three-dimensional and two-dimensional results both
agree well with the theoretical analyses, confirming
the feasibility of negative thermal transport in ther-
mal conduction and advection.

Negative thermal transport may enlighten the in-
verse Doppler effect in thermal conduction and ad-
vection. Since energy flow is generated from energy
source, a detector with opposite direction of energy
flow is getting close to energy source. Positive ther-
mal transport makes wave vector (which can be re-
garded as a thermal signal) follow the direction of
energy flow. Therefore, the directions of detector
and wave vector are also opposite, yielding frequency
increment (the Doppler effect). However, negative
thermal transport leads to the same directions of de-
tector and wave vector. As a result, frequency de-
creases even though the detector is getting close to
energy source (the inverse Doppler effect). These re-
sults may also provide guidance to extend transforma-
tion thermotics[28−30] to complex regime[31] and reg-
ulate thermal imaging.[32−37] Other thermal systems
such as those with periodic structures[38−41] are also
good candidates to explore negative thermal trans-
port. Nevertheless, here we reveal negative thermal
transport in an open system with energy exchange, so
there is still a difference from wave systems where no
energy exchange is required to realize negative refrac-
tion. Whether negative thermal transport can exist in
an isolated system remains to be studied.

In summary, we have established the thermal coun-
terpart of complex refractive index by coining complex
thermal conductivity. As a result, negative imagi-
nary thermal conductivity is just the thermal coun-
terpart of negative refractive index, which is featured
by the opposite directions of energy flow and wave
vector in thermal conduction and advection. Though
negative thermal transport seems to violate causality,
it can occur in an open system with heat exchange.
We further reveal negative thermal transport in three
different cases and provide three-dimensional experi-
mental suggestions, confirming its physical feasibility.
These results provide a different perspective to rec-
ognize conduction and advection, and may enlighten
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outspread explorations of negative thermal transport
such as the inverse Doppler effect in thermal conduc-
tion and advection.
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