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Note I: Analysis of interface matching: conformal, quasiconformal and pseudo-

conformal mappings

To illustrate why conformal mappings are insufficient to design a heat flux guide, we
need to resort to the theory of quasiconformal mapping [1]. In transformation optics, qua-
siconformal (or, more exactly, “extremal quasiconformal”, “closest-to-conformal” or “most
conformal” [2]) mappings are also used to reduce anisotropy [3–6]. Quasiconformal mappings
are a common generalization of conformal mappings [1], but we will show that they also can-
not match the interface flux. Thus, it is necessary to use pseudo-conformal mappings, which
further relax the restrictions of conformal mappings compared with quasiconformal ones.

Now, take the heat flux guide as an example. The two simply connected regions with
four endpoints A0B0C0D0 [Fig. 1(a)] and ABCD [Fig. 1(c)] on the boundaries are called
topological quadrilaterals in the theory of quasiconformal mappings [1, 7]. A conformal
mapping exits between them (Riemann mapping theorem [8]). However, this mapping does
not necessarily match the two sets of endpoints one-to-one, e.g., A0 → A, B0 → B, C0 → C,
and D0 → D. In fact, this correspondence is a basic requirement for designing a guide
when considering interface matching, for example, maintaining the heat source settings.
Achieving endpoints matching with conformal mappings requires that the two topological
quadrilaterals belong to the same conformal equivalence class. They should have the same
conformal moduleM , the aspect ratio of rectangles in the same equivalence class [1, 7]. When
the two topological quadrilaterals have different conformal modules, only non-conformal
mappings can make the endpoints match. In other words, non-conformal mappings shall
change the conformal module.

Quasiconformal mappings are an important tool for dealing with endpoint matching.
They satisfy the Beltrami equation [1]:

∂f

∂z0
= µ(z0)

∂f

∂z0
, (S1)

where µ(z0) is a complex value (named local complex characteristic) having a measure
supremum: |µ| ⩽ k < 1. It is evident that when µ(z0) vanishes, the Beltrami equation
reduces to the Cauchy-Riemann equation [Eq. (1)]. Figuratively speaking, the infinitesimal
disk is still a disk under conformal mappings but becomes an ellipse under quasiconformal
mappings. This is where anisotropy arises, and the local anisotropy can be measured by the
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dilation or the aspect ratio of the ellipse [1]:

K(z0) =
1 + |µ(z0)|
1− |µ(z0)|

. (S2)

In particular, quasiconformal mappings can make the change of conformal module bounded
by a ratio range from 1/ sup |K(z0)| to sup |K(z0)|, neither too large nor too small [1].
Quasiconformal ensures the existence of supremum sup |K(z0)| for all z0, i.e., the largest
dilation in the domain.

One simple example of quasiconformal mappings is the affine transformation without
changing the orientation. The affine transformation means the composition of a linear
transformation and a translation:

f = Az0 +Bz0 + C, (S3)

and the preservation of orientation requires:∣∣∣∣ ∂f∂z0
∣∣∣∣ > ∣∣∣∣ ∂f∂z0

∣∣∣∣ or |A| > |B| . (S4)

Preserving orientation is also a necessary condition satisfied by all quasiconformal map-
pings. According to Grötzsch’s theorem [1], the affine transformation is the closest to a
conformal one among all the non-conformal mappings that match the endpoints of topo-
logical quadrilaterals. “Closet” means having the smallest sup |K(z0)|, i.e., extremal qua-
siconformal mapping. This can explain why affine transformations (for example, uniform
compression/expansion on x0 od y0) are used in quasiconformal optical cloaks to minimize
anisotropy [3–6]. In these works, the transformation can also be divided into two steps. An
affine transformation is applied first to change the conformal module of the virtual space,
and then a conformal mapping is used to obtain the optical cloak in the physical space [5, 6].
The composition transformation is usually not an affine one but still quasiconformal. A small
constant diagonal anisotropy is generated in the first step which can finally be ignored if
the cloak is much larger than the cloaked domain [6]. We can see that the requirement of
preserving orientation is not necessary for ignoring anisotropy (e.g., |A| < |B|) since the
major and minor axes of the ellipse can be swapped in the definition of dilation.

Further, only considering the endpoints is usually not enough for interface matching. As
we have seen in the design of the heat flux guide, the expected transformation effect on
interfaces B0C0 → BC and A0D0 → AD have been decided beforehand, which cannot be
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realized if we use an affine transformation in the first step: B0C0 → B1C1 and A0D0 →

A1D1 [Fig. 1]. Our method of pseudo-conformal mappings has a crucial difference from
or generalization of quasiconformal mappings in the first step of non-conformal mappings.
Pseudo-conformal mappings do not necessarily satisfy the Beltrami equation [Eq. (S1)]. In
other words, they do not necessarily keep the orientation or have a finite sup |K(z0)|. The
composition of one pseudo-conformal mapping and one conformal mapping is generally not
a quasiconformal one, either. As long as pseudo-conformal mappings can induce diagonal
anisotropy in a chosen coordinate system, we can remove the anisotropy if only one diagonal
component of the conductivity tensor contributes to the flux. Here, diagonal anisotropy
means pseudo-conformal mappings are angle-preserving for some (not all) sets of orthogonal
grid lines. They can be Cartesian coordinates in the virtual spaces of the guide [Fig. 1(a)]
and the cloaks [Fig. 4(a)], or the polar coordinates in the virtual space of the expander
[Fig. 3(a)]. We can see that the uniform compression/expansion is also a pseudo-conformal
mapping. Below we discuss the specific form of this diagonal anisotropy and how it can
be equivalent to an isotropic parameter. We still consider an isotropic virtual space. The
governing equation [Eq. (2b)] in Cartesian coordinates is

∇0 · (κ0∇0T0) =
∂

∂x

(
κ0
∂T0
∂x

)
+

∂

∂y

(
κ0
∂T0
∂y

)
= 0. (S5)

More generally, we can select a corresponding orthogonal coordinate system according to the
isotherm-streamline grid lines in the virtual space. Of course, we have different choices for
the mapping from isotherms and streamlines to 2D spatial coordinates denoted by (q1, q2).
In particular, an intuitive way is to take one of the coordinates linearly related to the
temperature. Nevertheless, the difference in the assignment of coordinates does not affect
the final conclusion about the transformation rule of thermal conductivity. Eq. (2b) in
orthogonal contravariant coordinates (q1, q2) is

∇0 · (κ0∇0T0) =
1

h1h2

∂

∂q1

(
h2
h1
κ0
∂T0
∂q1

)
+

1

h1h2

∂

∂q2

(
h1
h2
κ0
∂T0
∂q2

)
= 0, (S6)

where hi is the scale factor. When considering a pseudo-conformal mapping, streamlines and
isotherms in the virtual space are mapped onto another set of orthogonal streamlines and
isotherms in the physical (or the auxiliary) space. Denote this set of orthogonal contravariant
coordinates as (u1, u2). The corresponding governing equation [Eq. (2a)] in (u1, u2) in the
physical space must have the same form as Eq. (S6) or simply as Eq. (S5) for the guide and
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the cloaks. Eq. (2a) in general curvilinear coordinates (u1, u2) is

∇ · (κ · ∇T ) = 1
√
g

∂

∂ui

(
√
gκij

∂T

∂uj

)
= 0, (S7)

where g is the determinant of gij = gi·gj (gi is the covariant basis) and κij is the contravariant
component of κ. Due to the form-invariance and the orthogonality, Eq. (S7) can reduce to

∇ · (κ · ∇T ) = 1

L1L2

∂

∂u1

(
L1L2κ

11 ∂T

∂u1

)
+

1

L1L2

∂

∂u2

(
L1L2κ

22 ∂T

∂u2

)
= 0, (S8)

and the thermal conductivity in the physical space can be expressed as

κ = κiigi ⊗ gi = κiiL2
i ĝi ⊗ ĝi. (S9)

Here, ĝi = gi/Li is the normalized basis, and Li = |gi| =
√
gii is the scale factor. We can

see κ is diagonalized in orthogonal coordinates (u1, u2), which means the tangents of grid
lines, i.e., the basis vectors ĝi, are just the principal axes at each point. Based on Eqs. (S6)
and (S8), we can obtain the contravariant component of κ:

κ11(z) =
1

L1(z)L2(z)

h2(z0)

h1(z0)
κ0(z0), κ22(z) =

1

L1(z)L2(z)

h1(z0)

h2(z0)
κ0(z0). (S10)

When talking about the principal values or eigenvalues of κ, we actually focus on the value
of κiiL2

i :
κ11L2

1 =
L1

L2

h2
h1
κ0, κ22L2

2 =
L2

L1

h1
h2
κ0. (S11)

In the physical space, there is also a set of orthogonal coordinates denoted by (q1, q2) which
use the same grid lines as (q1, q2) in the virtual space. The Jacobian Jf for the complex
transformation z0 7→ z in the main text is both the Jacobian of the coordinate transformation
(u1, u2) 7→ (q1, q2) in the physical space and the push-forward derivative of diffeomorphism
expressed by (q1, q2) 7→ (q1, q2) from the virtual space to the physical space. It determines
the value of L1/L2 with Li(z)/hi(z) =

√
J⊤
f Jf . Our two-step approach splits the effect

of coordinate transformations on thermal conductivity into two parts as well. In our first
steps for the three applications in the main text, they correspond to a kind of geometric
transformation (q′)i = (q′)i(qi) written in the same coordinate system for two spaces. It
induces a diagonal Jacobian since it maps the curve of constant-qi in one space to the curve
of constant-(q′)i in another space, and we only consider the case where ∂(q′)i

∂qi
> 0 is satisfied.

The second step is a conformal mapping and does not change L1/L2 at each point. At last,
we have

L1(z)

L2(z)

h2(z)

h1(z)
=
∂(q′)1

∂q1
/
∂(q′)2

∂q2
. (S12)
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When ∂T
∂u2

vanishes in Eq. (S8), it is easy to check that an isotropic thermal conductivity

κ(z) = κ0

(
∂(q′)1

∂q1
/
∂(q′)2

∂q2

)
h1(z)

h1(z0)

h2(z0)

h2(z)
(S13)

can induce the same thermal fields as the anisotropic κ by requiring L2

L1
κ = L1L2κ

11. We can
see κ in Eq. (S13) is just the first diagonal element κ11L2

1 in Eq. (S11). If we instead map the
isotherm originally labeled by q1 to a new coordinate q̃1 in the virtual space (∂q̃1/∂q1>0),
the corresponding scale factor is h̃1 = h1∂q

1/∂q̃1. A similar operation can be done for the
streamlines to use the new coordinate. Now, the first-step pseudo-conformal mapping writes
(q̃′)i = (q̃′)i(q̃i). Since ∂(q′)i

∂qi
= ∂(q′)i

∂(q̃′)i
∂(q̃′)i

∂q̃i
∂q̃i

∂qi
, mapping the isotherm-streamline grids to differ-

ent coordinate values in virtual space does not affect the thermal conductivity [Eq. (S13)]
in the physical space.

Finally, we should point out that the terminology “pseudo-conformal mapping” sometimes
might refer to “biholomorphic mapping” (a generalization of univalent conformal mapping
with several complex variables) [8] in early studies. However, this usage is quite uncommon
now, especially in English literature. Without causing ambiguity, we can call our method
“pseudo-conformal” to denote a further generalization of quasiconformal mappings.

Note II: Experimental demonstration of the heat flux guide

In experimental verification for the heat flux guide, the required κ distribution is approx-
imately realized by a sample made of copper-air composites. In the top view [Fig. S1(a)],
the sample and the model in the simulation [Fig. 2] have the same size, except for a slight
extension (0.6 cm each) at both ends (i.e., the inlet and outlet). The matrix material of
the guide is copper, engraved with 20× 30 periodic air holes. The guide part of the sample
is a one-twelfth annulus whose inner and outer radii are 40 cm and 60 cm, respectively.
The background part has a length of 10.74 cm. The air-hole array is formed by rotating the
bottom row (containing 20 holes) about the origin: starting from a rotation of 1° and ending
with a rotation of 29°, with periodic intervals of 1°. In the 3D view [Fig. S1(b)], the copper
plate and the air cylinders are 0.3 cm thick. Two aluminum plates (8 cm long) screwed
to the copper extensions are inserted into the water baths. The thermal conductivities of
copper and aluminum are 400 W m−1 K−1 and 273 W m−1 K−1, respectively.

In particular, the bottom row of air holes is shown in Fig. S1(a). It is divided into 20 parts
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FIG. S1: Experimental demonstration of a thermal guide. (a) Structure of the guide: top view.

The structure is composed of copper (dark color) and air (white holes) (b) 3D structure of the

guide. (c) Photograph of the experimental setup. (d) Measured temperature distributions.

according to the rotation trajectory of the twentieth points on the inlet, each containing an
air hole labeled by sequence number n from 1 to 20. The centers of these holes are on the
constant-azimuth line with regard to 0.5°, and their radial coordinates are (39.5 + n) cm.
The radii of the air holes rn are determined based on the effective medium approximation.
Each part in the bottom row (also labeled by n) is expected to have an effective thermal
conductivity κn equal to the spatial average calculated by Eq. (4), which is approximately
6.5× (39.5 + n) W m−1 K−1. Thermal conductivities of the air and the copper are denoted
by κair and κCu, respectively. The volume fraction of the air hole in each part of the bottom
row, fn, equals 360r2n/(79+2n) (rn in cm). Then, we have the Maxwell-Garnett formula [9]:

κe − κCu
κe + κCu

= fn
κair − κCu
κair + κCu

, (S14)

and the values of rn can be obtained and listed in TABLE I. For simplicity, we take κair ≈ 0
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in calculation.

TABLE I: Radii of the air holes.

Sequence number n 1 2 3 4 5 6 7

Radius rn (cm) 0.23 0.22 0.21 0.20 0.20 0.19 0.19

Sequence number n 8 9 10 11 12 13 14

Radius rn (cm) 0.18 0.18 0.17 0.17 0.16 0.15 0.14

Sequence number n 15 16 17 18 19 20

Radius rn (cm) 0.13 0.12 0.11 0.10 0.09 0.07

Fig. S1(c) is a photo of the experimental setup in our lab. On the left of the sample
is an ice-water mixture (cooling) and on the right is another water bath with a heating
rod. When the experimental setup reaches a steady state, a temperature difference of about
25 K can be generated between the two ends of the guide. Fig. S1(d) shows the measured
temperature distribution detected by an infrared camera. The six lines corresponding to their
counterparts in Fig. 2(b) are also plotted. The temperature data read from them are shown
in TABLE II. The first three rows show the number of data points, average temperature and
standard deviation on each line. The last three rows correspond to the data after the extreme
values of the edges are discarded. Due to the way they come into contact with the water
baths, the sample is not strictly isothermal at both ends. The error also comes from the
influence of the environment (loose thermal insulation boundaries) and the approximation
of the sample itself relative to the ideal parameters. The difference between the two groups
of data in the middle four lines is relatively small. The extreme values on the outlet and
inlet have a more significant impact. The copper and aluminum plates are tightened with
screws on the four endpoints, which increases the interfacial thermal resistance. In addition,
the temperature difference from the environment is the greatest here because of the closest
distance to water baths.
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TABLE II: Measured temperatures on the six chosen lines in Fig. S1(d).

Data line 1 2 3 4 5 6

Number of data 259 268 272 272 276 276

Average temperature (K) 316.91 308.92 302.37 297.10 294.63 292.01

Standard deviation (K) 1.16 0.41 0.19 0.12 0.14 0.47

Number of dataa 233 240 244 244 248 248

Average temperaturea (K) 316.68 308.94 302.37 297.10 294.65 292.10

Standard deviationa (K) 0.38 0.40 0.17 0.11 0.09 0.38

a The extreme data with an arc length of 1 cm at both ends are discarded.

Note III: Detailed derivations of finding the appropriate pseudo-conformal mapping

for the expander

To obtain the thermal conductivity in Eq. (5), we use an auxiliary space whose polar
coordinates are radius r and azimuth ψ. Again, a pseudo-conformal mapping z0 = ρeiθ 7→

z1 = reiψ is first applied from the virtual space to the auxiliary one. Then, the Möbius
transform z = i i+re

iψ

i−reiψ shapes the expander in the physical space. To homogenize the heat
flux, we need to rearrange the streamlines labeled by θ so they can cut the x-axis (an
interval-length equal to 2) evenly in the physical space (a constant ∂x/∂θ). To do so, the
pseudo-conformal map can be simplified as θ 7→ ψ ∈ [π, 2π], and it maps the lower unit
half-disk onto itself. Since the Möbius transform gives x = cosψ

1−sinψ
on the x-axis, we should

require
∂x

∂ψ

∂ψ

∂θ
=
∂ψ

∂θ

1

1− sinψ
=

2

π
. (S15)

It is easy to find the inverse mapping ψ 7→ θ is

θ =
π

2

cosψ

1− sinψ
+

3

2
π. (S16)

The analytical expression of ψ = ψ(θ) is

ψ = 2arctan

(
θ − 2π

θ − π

)
+ 2π. (S17)

In fact, we only need to know the Jacobian element Jψθ = 2
π
(1 − sinψ) since we do not

need to transform the coordinate ρ. Then, the thermal conductivity in the auxiliary space
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is (recalling Eq. (7))
κ1 =

ρ

r

Jrρ
Jψθ

=
π

2

1

1− sinψ
κ0 (S18)

because only κrr1 (or κρρ0 ) appears in the heat conduction equation in the auxiliary (or
virtual) space. Based on Eq. (3b), the point source power should be Q0/(2Jψθ(ρ = 0)) to
ensure T (z) = T0(z0(z)). Since different power values will not change the family of curves of
isotherms, we can still take Q = Q0/2 because our target is only averaging the flux on the
x-axis. For a similar reason, a thermal conductivity proportional to 1

1−sinψ
is enough, so we

can obtain Eq. (5):

κ(x, y) =
κ0

1− sinψ(x, y)
= κ0

(
1 +

√
(x2 + y2 − 1)2

x4 + 2x2 (y2 + 1) + (y2 − 1)2

)−1

. (S19)

The range of normalized thermal conductivity κ1
κ0

or κ
κ0

is [0.5, 1], and we illustrate their
spatial distributions in Figs. S2(a) and S2(b).

FIG. S2: Normalized thermal conductivity in the (a) auxiliary space and (b) physical space for the

thermal expander. (c) Simulated temperature profile of the thermal expander with an extension.
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Note IV: Thermal expander with an extension

Here, we give the performance of the thermal expander when an extension is attached
to its bottom on the x-axis [Fig. S2(c)]. The extension region is a rectangle. Its height is
1.6 m in our simulation. The external heat source (thermostatic sink at 290 K) in Fig. 3(c)
is removed now. Instead, another external source is put on the bottom of the extension,
and its temperature is 287 K. The other boundaries of the whole system are all thermally
insulated. The thermal conductivity in the extension is 400 W m−1 K−1. Other parameters,
including the point source power, are not changed. We plot the isotherms and streamlines in
Fig. S2(c). We can see that the isotherms in the extension are all parallel to the x-axis and the
streamlines are all parallel to the y-axis. This shows that the heat flux after parallelization
by the expander can keep its direction in the extension. Here, the the extension’s height
and the source’s temperature can have other values that do not influence the function of
this expander. The value we set in the simulation can make the temperature on the x-axis
exactly 290 K. Obviously, conformal mapping (Möbius transform) alone cannot keep the
heat flux in the extension parallel to the x-axis under the boundary conditions in this case.

Note V: An alternative approach to thermal expander using transposed bipolor

coordinates

Actually, we can see the contours in Fig. S2(b) (and the isobars and streamlines in
Figs. 3(b) and 3(c)) have the same pattern as the grid lines for the bipolar coordinates.
We can also use such a coordinate system in the physical space to obtain the thermal
conductivity distributions in Eq. (5). Here, we use different definitions from the common
bipolar coordinates. The two foci F1 and F2 of the bipolar coordinate system are placed on
the y-axis of the Cartesian coordinate system, i.e., (0,−1) and (0, 1) [Fig. S3(a)]. The σ-
coordinate of a point P , whose value range is (−π, π), is related to the F1PF2 angle denoted
by α ∈ (0, π]. For a point in the left half-plane, e.g., A in Fig. S3(a), we take σ = α − π

so it has a negative value. On the other hand, a point like B in the right half-plane has a
positive σ value equal to π−α. The τ -coordinate is defined by ln d1

d2
, in which d1 and d2 are

the distance to F1 and F2, respectively. In Fig. S3(b), we plot some grid lines of this bipolar
coordinate system. Both the curves of constant-σ and constant-τ are non-concentric circles,
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FIG. S3: (a) Schematic diagram for the definition of a transposed bipolar coordinate system with

foci at (0,±1). (b) Curves of constant-σ (solid lines) and constant-τ (dashed lines).

except for σ = 0 (the y-axis) and τ = 0 (the x-axis). In particular, curves of constant-σ and
constant-(σ− π) are on the same circle if σ > 0. It is easy to check that the scale factors of
the two coordinates are the same, i.e., hσ = hτ =

1
cosh τ−cosσ

, so the heat conduction equation
can be written as

(cosh τ − cosσ)2
(
κ(σ)

∂2T (τ)

∂τ 2

)
= 0 (S20)

if ∂T
∂σ

= 0 and ∂κ
∂τ

= 0. In other words, the temperature still satisfies a Laplace equation.
This is just the case shown in Fig. 3 and Fig. S2, and we can find τ = − ln r

σ = ψ − 3
2
π

(S21)
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under the Möbius transformation

x+ iy = tan

(
σ + iτ

2

)
= i

i+ reiψ

i− reiψ
. (S22)

Similarly, the heat flux along the curve of constant-σ is

κ(σ)
∂T (τ)

∂τ
(cosh τ − cosσ) . (S23)

To eliminate the difference of flux magnitude on the x-axis in the physical space, we should
let

κ(σ) ∼ 1

cosh(τ = 0)− cosσ
=

1

1− cosσ
=

1

1− sinψ
. (S24)

We can see Eq. (S24) gives the same result as Eq. (5) and Eq. (S19), and κ can be written
in a more compact form using the transposed bipolar coordinates.

Note VI: Inversion of the Zhukovsky transform and its branch cut

The general Zhukovsky transform [10]

z1 = z +
c2

4z
(S25)

is conformal except for a simple pole z = 0 and can be used to map an annulus to an ellipse
region (including the boundaries). In particular, the inner circle (with a radius equal to c/2)
of the annulus is transformed into the line segment between the foci (±c, 0) of the ellipse. It
is easy to find that Eq. (S25) is not an injection due to z1(z) = z1(c

2/4z). To make z1(z) a
univalent function, we should consider the domain in which z and c2/4z cannot coexist, e.g.,
{z : |z| > c/2} or {z : |z| < c/2}. The inverse map is thus a double-valued function [10]:

z =
z1 ±

√
z21 − c2

2
(S26)

except at the algebraic branch points (±c, 0). We should notice that the sign of ± in
Eq. (S26) does not directly distinguish the two univalent branches of the inverse map. In
fact, the two branches should conformally map the two sheets of the Riemann surface of
the inverse map onto {z : |z| ⩾ c/2} and {z : |z| ⩽ c/2}, respectively [10]. In addition, the
line segment [−c, c] (also called the branch cut) on the x1-axis is mapped onto the circle
{z : |z| = c/2} by both branches.
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FIG. S4: The complex three-dimensional (3D) plot of Abs colored by Arg for (a) the Zhukovsky

transform z1 = z + 1
z , (b) the inverse transform z =

z1+
√
z21−4

2 , and (c) the inverse transform

z =
z1−

√
z21−4

2 . The red grid lines and the blue ones are isosurfaces of the argument and the

absolute value of the corresponding images, respectively. (d) The projection (top view) of joined

upper surfaces in (b) and (c).

For simplicity, we take c = 2 and illustrate the Zhukovsky transform and its inversion
in Fig. S4. In Figs. S4(a)–S4(c), the height of the surface represents the absolute value
(denoted by Abs) of the complex number, while the color represents the argument (denoted
by Arg). We can see the two images of the inverse transformation shown in Figs. S4(b) and
S4(c) are both split by the y1-axis, demonstrating a discontinuity of Abs[z]=|z|. It is easy to
check that both the upper surfaces in Figs. S4(b) and S4(c) correspond to the mapping onto
the region exterior to the circle {z : |z| = c/2} while the lower ones correspond to the map
onto its interior. In addition, we can see the limits to the split edge has the relationship:

lim
x1→0−

z1 −
√
z21 − c2

2
= lim

x1→0+

z1 +
√
z21 − c2

2
=
iy1 +

√
(iy1)2 − c2

2
. (S27)

Therefore the two upper surfaces can be joined along the y1-axis on which the image takes
the value of z1+

√
z21−c2
2

. Their projection, shown by a 2D plot in Fig. S4(d), can cover the
whole complex plane. This represents one sheet of the Riemann surface to be mapped onto

14



{z : |z| ⩾ c/2}. In particular, an ellipse whose foci are also (±c, 0) is transformed into an
annulus, which gives (the outer layer of) the bilayer shell cloak and its carpet counterpart
[Fig. 4]. Similarly, the two lower surfaces in Figs. S4(b) and S4(c) can also be joined,
representing another sheet of the Riemann surface, to be mapped onto the area inside the
cloak, i.e., {z : |z| ⩽ c/2}.

Note VII: Verification for transient cloaking

When considering transient heat conduction, Eq. (2) should be modified as

ρC
∂T

∂t
−∇ · (κ∇T (z))−Q = 0, (S28a)

ρ0C0
∂T0
∂t

−∇0 · (κ0∇0T0(z0))−Q0 = 0, (S28b)

where t is the time, ρ and C are the density and the specific heat in the physical space,
respectively, and ρ0 and C0 are their counterparts in the virtual space. They satisfy [11]

ρ(z)C(z) = ρ0(z0)C0(z0)/ det Jf . (S29)

Therefore, a steady-state cloak is distinguished from a transient cloak in that the product
of density and specific heat also affects heat transfer in the latter. In order to apply the
same transformation as the steady state, the streamlines and isotherms at each moment in
the virtual space should be the grid lines of the Cartesian coordinate system. In this way,
Eq. (S13) should induce the same thermal conductivity as the cloak for steady conduction
[Eq. (7) or Eq. (8)]. A common situation is to make the temperature uniform at the ini-
tial moment, such as at the temperature of the cold source. Fig. S5 shows the simulated
temperature at different times for both the normal bilayer cloak and zero-index cloak. We
use the same material and boundary settings as in Fig. 4 and take ρ0 = 8900 kg m−3 and
c0 = 385 J kg−1 K−1. The value of det Jf is

det Jf =
ab

R2
2

∣∣∣∣ dzdz1
∣∣∣∣2 = R4

2 −R4
1

R4
2

(x2 + y2)2

((x+R1)2 + y2)((x−R1)2 + y2)
. (S30)

In previous studies [12], a normal bilayer cloak without transforming the density or specific
heat will noticeably lose its invisibility in transient situations, especially when the isotherms
are centered near the heat source, i.e., far from the nonequilibrium steady state.
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FIG. S5: Simulated temperatures at different times (50 min, 100 min and 150 min). (a1)–(a3) are

the results for normal bilayer cloak while (b1)–(b3) are the results for zero-index cloak. The white

dotted lines frame the inner layer of the cloaks. Same as Fig. 4, the white solid curves indicate

isotherms (from 291 K to 299 K with an interval of 1 K), and the gray solid curves with arrows

represent streamlines. The initial temperature distribution is 290 K for the whole domain.

In Figs. S5(a1)–(a3), we can see the cloaking and invisibility effect is perfect at each
moment when introducing a spatial gradient of density times specific heat. The “carpet” or
semi-annulus zero-index cloak also perform well [Figs. S5(b1)–(b3)]. In the transient case,
the lower boundary, including the so-called inner layer, is still an isotherm with a constant
value. For the complete “shell” cloak, the boundary condition on the inner layer (central
circle whose radius is R1) needs to be set as an isotherm whose temperature value varies
over time. It is easy to see the time-dependent value is equal to the reference temperature
at the center (x–axis) of the virtual space.

16



FIG. S6: Schematic illustration of the transformation to get a confocally elliptical shell cloak. The

ellipse in the virtual space (preimage of the cloak) is mapped onto the shell cloak in the physical

space. The background outside the cloak undergoes an identity transformation.

Note VIII: Confocally elliptical shell cloak

In addition to annular cloaks, the method of pseudo-conformal mapping can also be used
to design cloaks with other geometries like confocal ellipses. Take the shell cloak as an
example (referring to the outer layer of a bilayer cloak). We need to transform an ellipse
into a shell whose boundaries are confocal elliptical loops [Fig. S6]. Their common foci are
denoted by (±c, 0) on the x-axis. The definition of the elliptic coordinates (µ, ν) in the
physical space can be expressed as

z = x+ iy = c cosh(µ+ iν) = c
eω + e−ω

2
, (S31)

where ω = µ + iν (µ is a nonnegative real number and ν ∈ [0, 2π)) is also a point in the
complex plane. This relationship actually shows a Zhukovsky transform eω 7→ z with a
coefficient c/2. It is worth noting that, in Fig. S4(d), the curves of constant-|z| are just
elliptical loops with the same foci. In other words, the Zhukovsky transform can map
concentric circles to confocal elliptical loops.

Inspired by Eq. (S31), we use the following transformation to construct an elliptical shell
cloak [Fig. S7]. For simplicity, we take c = 2 and only consider the map in Quadrant I. The
µ coordinates of the cloak’s inner and outer elliptical boundaries are µ1 and µ2, respectively.
We start from the virtual space [Fig. S7(a)]. The upper-right quarter-ellipse domain has a
semi-major axis equal to 2 coshµ2 and a semi-minor axis equal to 2 sinhµ2. We should finally
transform it onto the area wrapped by elliptical loops denoted by µ1 and µ2 in the physical
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FIG. S7: The 3-step transformation to design a confocally elliptical cloak. Only the part in

Quadrant I is illustrated. (a)–(d) The procedure to obtain a normal bilayer cloak when the thermal

bias is applied along the x-axis or a zero-index cloak when the thermal bias is applied along the

y-axis. (e)–(f) The procedure to obtain a zero-index cloak when the thermal bias is applied along

the x-axis or a normal bilayer cloak when the thermal bias is applied along the y-axis.

space [Fig. S7(d)]. An intermediate target can be an upper-right quarter-annulus, and then
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we can use a Zhukovsky-like transform to get the cloak. The map onto the quarter-annulus
can be decomposed into two steps. First, do a compression

x1
x0

=
cosh(µ2 − µ1)

coshµ2
y1
y0

=
sinh(µ2 − µ1)

sinhµ2

(S32)

from Figs. S7(a) to S7(b), whose image in the auxiliary space I is another quarter-ellipse with
a semi-major axis equal to 2 cosh(µ2 − µ1) and a semi-minor axis equal to 2 sinh(µ2 − µ1).
Second, like what we have done in designing the annular cloak, use the second branch of
Eq. (6) to obtain the quarter-annulus in the auxiliary space II, whose outer and inner radii
are eµ2−µ1 and 1, respectively. Finally, the Zhukovsky-like transform

z = eµ1z2 + (eµ1z2)
−1 (S33)

shapes the confocally elliptical cloak in Quadrant I. Its counterpart in Quadrant IV can
be generated by the same procedure. To obtain the left part of the cloak in Quadrant II
and III, we should use the first branch of Eq. (6) instead. The whole transformation from
Figs. S7(a) to S7(d) for the shell cloak again demonstrates a topological genus change that
maps the line segment {z0 : − 2 coshµ2

cosh(µ2−µ1) ⩽ x0 ⩽ 2 coshµ2
cosh(µ2−µ1) , y0 = 0} to the elliptical loop

denoted by elliptic coordinate µ1. Also, two solutions for cloaking can be found here. If the
thermal bias is applied along the x-axis, we should set the shell’s thermal conductivity and
the boundary condition on the elliptical loop µ1 as κ = κx0x00

∂x1
∂x0

∂y0
∂x1

= κx0x00 tanhµ2 coth(µ2 − µ1)

κ(µ = µ1) = 0.
(S34)

On the other hand, if the thermal bias is along the y-axis, we will get the zero-index cloak,
which requires  κ = κy0y00

∂y1
∂y0

∂x0
∂x1

= κy0y00 cothµ2 tanh(µ2 − µ1)

T (µ = µ1) = T0(y0 = 0).
(S35)

Different from the symmetry of an annular cloak, turning a line segment on the y0-axis
into an elliptical loop will yield another set of solutions. The procedure in Figs. S7(e)–
S7(h) shows such a transformation, and we change the first two mappings compared with
Figs. S7(a)–S7(d). First, we need a mapping to move the foci to the y1-axis, which can be
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FIG. S8: Temperature profiles for elliptical cloaks with the same geometry. (a) The normal bilayer

cloak under a thermal bias along the x-axis. Its inner layer, plotted by a brown elliptical loop, is

thermally insulated. The thermal conductivity in its outer layer (the shell with confocally elliptical

boundaries) is given by Eq. (S34). (b) The zero-index cloak under a thermal bias along the y-axis.

The inner layer, indicated by a purple dashed curve, has a constant temperature maintained by

an external source. The thermal conductivity in its outer layer is given by Eq. (S35). (c) The

normal bilayer cloak under a thermal bias along the y-axis. Its inner layer is thermally insulated.

The thermal conductivity in its outer layer is given by Eq. (S38). (d) The zero-index cloak under

a thermal bias along the x-axis. The inner layer has a constant temperature maintained by an

external source. The thermal conductivity in its outer layer is given by Eq. (S39).
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realized by the compression transformation [Figs.S7(e) and S7(f)]
x1
x0

=
sinh(µ2 − µ1)

coshµ2
y1
y0

=
cosh(µ2 − µ1)

sinhµ2

.
(S36)

Then, the conformal map onto an annulus that replaces Eq. (6) is
z2 =

z1 −
√
z21 + 4

2
, if x1 < 0

z2 =
z1 +

√
z21 + 4

2
, if x1 ⩾ 0.

(S37)

The second formula is used to obtain the upper-right quarter-annulus in Fig.S7(g). In fact,
Eq. (S37) is one branch of the inversion of z1 = z2 − 1/z2. The last step to Fig.S7(h) is still
using Eq. (S33), and the 3-step procedure finally maps the line segment {z0 : − 2 sinhµ2

cosh(µ2−µ1) ⩽
y0 ⩽ 2 sinhµ2

cosh(µ2−µ1) , x0 = 0} onto the inner elliptical loop denoted by µ1. Similarly, we can see
the normal bilayer-cloak solution is κ = κy0y00 cothµ2 coth(µ2 − µ1)

κ(µ = µ1) = 0
(S38)

when the thermal bias is put along the y-axis. The zero-index-cloak solution is κ = κx0x00 tanhµ2 tanh(µ2 − µ1)

T (µ = µ1) = T0(x0 = 0)
(S39)

when the thermal bias is put along the x-axis. The solutions given by Eq. (S34) and (S38)
have been obtained in Refs. [13, 14] by solving the heat equation directly. Here we give a
geometric approach to get the same material parameters and find another set of cloaking
condition [Eqs. (S35) and (S39)] related to the zero-index cloak with confocal elliptical
configuration. It is worth noting that the elliptical cloak has one more pair of invisibility
conditions than the annular cloak because it no longer has the symmetry of the 90° rotation.

As an example, we take µ1 = 0.5, µ2 = 1 and κ0 = 400 W m−1 K−1, and show the
performance of these four cloaks in Fig. S8 based on finite element modeling. The values
of the corresponding hyperbolic functions and the focal length 2c are measured in meters.
The geometry of the whole system is a square with the center at the origin and a side length
of 4 m. The thermal bias is 10 K, achieved by a hot source fixed at 300 K (represented
by a thick red solid line) and a cold source fixed at 290 K (represented by a thick cyan
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solid line). Figs. S8(a), S8(b), S8(c), and S8(d) represent the cloak based on Eq. (S34),
Eq. (S35), Eq. (S38), and Eq. (S39), respectively. Figs. S8(a) and S8(c) are normal bilayer
cloaks whose inner layers are drawn in brown as well as other boundaries with thermal
insulation conditions. Figs. S8(b) and S8(d) are zero-index cloaks. Purple dashed lines
represent their inner layers, and a constant temperature of 295 K is set on them. 295 K
is just the temperature on the x0-axis in the virtual space. All four cloaks show a perfect
invisibility effect. The duality relationship of the isotherms and the streamlines can also be
observed between Figs. S8(a) and S8(b) or between Figs. S8(c) and S8(d).
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