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As an emerging branch in the area of flow control, hydrodynamic metamaterials have received considerable attention
because of their novel flow control capabilities. In this review, we present prominent studies on hydrodynamic metamateri-
als in porous media, non-porous media, creeping flows, and non-creeping flows from several perspectives. In particular, for
hydrodynamic cloaking metamaterials, we unify the descriptive form of transformation hydrodynamics for hydrodynamic
metamaterials in porous and non-porous media by the hydrodynamic governing equations. Finally, we summarize and out-
look the current shortcomings and challenges of current hydrodynamic metamaterials and propose possible future research
directions, especially for microfluidics, exotic fluids, hydrodynamic cloaking in high Reynolds numbers, and turbulence.
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1. Introduction

Flow control can be divided into macroscopic flow con-
trol and microscopic flow control (i.e., microfluidics). Macro-
scopic flow control usually includes drag reduction, lift en-
hancement, transition delay, separation postponement, turbu-
lence augmentation, and noise suppression, among others.!-?!
For microfluidics, flows can be manipulated precisely with
microscale devices, which are involved in the semiconduc-
tor industry, the micro-electromechanical systems (MEMS)
field, lab-on-a-chip technologies, and bio-fabrication research,
among numerous other areas.>* Efficient flow control sys-
tems can not only save billions of dollars annually in fuel
costs for air, land, and sea vehicles, but also enable indus-
trial processes involving flow control to become more precise
as well as more economically and environmentally compet-
itive. Therefore, the ability to actively or passively manip-
ulate the flow field to achieve desired changes according to
human wishes undoubtedly becomes crucial. For example,
the resistance of a traveling object (such as a car, submarine,
airplane, etc.) is generally proportional to the square of the
object’s velocity, and the power consumed is proportional to
the third power of the velocity. Namely, whenever the ve-
locity increases two times, the resistance will increase four
times, and then the power consumption is increased to eight
times. However, if an object is in a hydrodynamically perfect
cloaking state, then its drag force can become zero in motion,
and in turn this object will not need additional boosters and
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power consumption. Thus, zero energy consumption can be
achieved, which would be very exciting.

The emergence of metamaterials of optical cloaks allows
light or electromagnetic waves to propagate around an object
as a fluid, leading to the cloaking of the object.[>! Conse-
quently, it has inspired numerous studies on metamaterials

in different fields, such as optics,[s’(’] electromagnetics,[é’”

8.9] 10.11 "and  thermodynamics.!'%13]

acoustics,| mechanics,|
However, how to achieve accurate manipulation of the flow re-
mains a huge challenge because the Navier—Stokes equations
governing fluid flow constitute a nonlinear set of equations,
rendering studies of hydrodynamic metamaterials more chal-
lenging than those of other metamaterials, and consequently
slower than the development of other metamaterials by many
years. Fortunately, after these years of development, hydrody-
namic metamaterials have gradually become an emerging hot
research area.

To provide the readers with a clear understanding of the
history, physical mechanisms, and future trends of hydrody-
namic metamaterials, we would like to review the major mile-
stones of hydrodynamic metamaterials. In this review, we
first introduce the theory and experiment of various kinds of
hydrodynamic cloaking metamaterials in porous media and
non-porous media. Then, we introduce other hydrodynamic
metamaterials beyond cloaking. Finally, we present an out-
look on the development of this appealing field and raise the

challenges to be addressed.
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2. Hydrodynamic cloaking metamaterials

To understand the basic fundamentals of hydrodynamic
metamaterials, we start with their governing equations. The
continuity equation and Navier—Stokes equations for incom-
pressible flows at steady state without the influence of body
forces can be written as

V-u=0,
pu-Vu+Vp=V-(uVu),

ey
2

where p, U, u, and p denote density, dynamic viscosity, ve-
locity vector, and pressure, respectively.

2.1. Hydrodynamic metamaterials in porous media

For creeping flows in porous media, the inertia term
pu-Vu in Eq. (2) can be neglected. Hence, equation (2) can

be simplified to the Brinkman—Stokes equation!'#!

uViu=Vp+ ok 'u, 3)

where U serves as the effective viscosity of the flow in porous

media and k serves as the permeability in porous media.
Under the constraint of small permeability, the viscous

term uV2wu in Eq. (3) can be neglected and the Brinkman—

Stokes equation can be further simplified to Darcy’s law!!4!

lu,

Vp=—Uok~ “)

and further can be reduced to the form of Laplace’s equation
as follows:

V. (kVp) =0. 5)

Therefore, we can introduce the coordinate transformation ma-
trix J so that equations (1) and (5) from the virtual space
x(x,y,z) to the physical space =’ (x,y,z) satisfy

V.u' =0,

V' (JxJT/det(J)V'p') = 0. (6)

Matching each term with Egs. (1) and (5) subsequently pro-
vides us the fundamental equations for hydrodynamic trans-

formation medial!

K =JxJT/det(J). (7
Since equations (1) and (5) satisfy the coordinate transforma-
tion invariance, we can choose different coordinate transfor-
mations, and calculate different transformation matrices J to
obtain different k', and then we can design different functional
hydrodynamic metamaterials in porous media.

The most common hydrodynamic metamaterial is the hy-

drodynamic cloak, whose spatial coordinate transformation is

) [ Ra—=Ry
="

ner radius of the cloak and R, serves as the outer radius of

r ) r+R1,0" = 0,7 =z, where Ry serves as the in-
the cloak. Namely, one point in the virtual space expands to a
cylinder in the physical space (r < R;), while the area beyond
the outer circumference of the annulus (r > R;) remains intact.
Then, the parameters of the hydrodynamic cloak in porous me-
dia can be obtained from Eq. (7), as shown below:

K}/'r K}/’O

/
or Koo

_ ((r'—zm/r’

0
Similarly, hydrodynamic concentrators, hydrodynamic rota-

0

/
r’/(r/—R1)>K’ R <r <Ry (8)

tors, and hydrodynamic camouflage devices under creeping
flows all can be obtained by coordinate transformation the-
ory, as shown in Table 1. In addition, to extend metamateri-
als to the non-creeping flow circumstances, the stabilization of
the hydrodynamic cloak in laminar-flow conditions!!®!”! and
the wave reduction resistance of the hydrodynamic cloak in

turbulent-flow conditions!!8!

are successively studied. How-
ever, owing to the huge resistance of fluid flow in porous me-
dia, it is extremely difficult to provide a high Reynolds number

for practical situations.

Table 1. The most common cylindrical hydrodynamic metadevices in porous media and non-porous media based on transformation hydrodynamics.

Devices Coordinate transformation Parameters in porous media (k”) Parameters in nonporous media (t')
TR o
— T_
Cloak P = (B ) r+RLO< <R S I I w= | u
0 & o =
/o (RaRy
R r+ — R3 — 0
r’:(R—;)r,Ogr<R2 (R3r,R2) 0 :-’+(§2,',§‘)R3
Concentrator P Rk K = p Kk u'= 3T - u
U 3R 21 o 27N
= r— R3,R, <r<R 0 - P ((R2=RL ) Ry
<R3*R2> (RB*R2> HE2 =T =0 ﬂ+(§? 2;)R3 0 (R3r,R2) 3
onr' o 2 onr
1 0 ( 0r ) +1 07"
., R,-R R-R R,-R
Rotator r':r,G/:(-)—e()(RszR'),ngrng K = , 2, 12 K u = 2 SR 7!
2—R 6o 6o’ +1 N 1
Ry—Ry \Ry—Ry Ry—R;
Camouflage  object- and illusion-dependent object- and illusion-dependent object-and illusion-dependent
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To further extend the hydrodynamic metamaterials to
the area of convective thermal metamaterials, by coupling
Egs. (1) and (4) and energy transport equation, the authors in
Refs. [19,20] successively studied convective thermal meta-
materials from both steady-state and transient perspectives.
After the extension of hydrodynamic metamaterials to the area
of thermal metamaterials, numerous thermal metamaterials

[21-26] enabling the

with various functions have been studied,
application of hydrodynamic metamaterials to be expanded
from the area of nonlinear hydrodynamic metamaterials con-
taining thermo-hydrodynamic coupling.

Since the above hydrodynamic metamaterials are ob-
tained based on the theory of porous media, they cannot be
applied in the environment without porous media. For this
reason, numerous researchers have started to investigate hy-
drodynamic metamaterials in the non-porous media environ-
ment.

2.2. Hydrodynamic metamaterials in non-porous media

Inspired by the fact that magnetohydrodynamic (MHD)
effects[?”1 can be used to eliminate vortices, an active mag-
netohydrodynamic metamaterial is studied.[*®! This study
demonstrates that the metamaterials can eliminate the wake
behind the cylinder at a fixed volume force distribution under
forced laminar flow over a wide range of Reynolds numbers.
However, these magnetohydrodynamic metamaterials cannot
achieve perfect cloaking. To establish a design theory for fab-
ricating perfect hydrodynamic metamaterials, the authors in
Ref. [29] first proved that equations (1) and (2) (neglecting the
inertia term) in creeping flows satisfy the coordinate transfor-
mation invariance and established the transformation hydrody-
namics. Because the fluid flow bounds in the boundary layer
are rotational, the governing equations do not satisfy the co-
ordinate transformation invariance. To provide a clearer and
more concise proof, according to Ref. [30], under irrotational-
flow idealization (i.e. viscous potential flows), equations (1)
and (2) can be transformed into Laplace equations as

V.-V =0, ©)
V- (u"'vQ) =0, (10)

where ¢ satisfies V@ = wu, known as the velocity potential,
and Q = 1p|u|?+ p. Here the term Jp|u?in Q= 1p|u>+p
originates from the nonlinear convective term « - Vu and bears
the unit of mechanical energy density (in units of J/m?). Tt is
worth noting that we present the governing equations of hy-
drodynamics in the form of Laplacian, mainly in the hope
that related researchers can overcome the current challenges
of hydrodynamics metamaterials by taking advantage of the
research ideas in the well-developed fields of electromagnetic
When hydrody-
namic metamaterials regulate high-Reynolds flows, then the

metamaterials and thermal metamaterials.

theory will be more than just the Laplace equation.

If we assume the flow is creeping flows, then Q = p.
Comparing Eq. (10) with Eq. (5) reveals that they are both in
the form of Laplace’s equation. Obviously, we can similarly
introduce the spatial coordinate transformation matrix J such
that equations (9) and (10) from the virtual space x(x,y,z) to
the physical space ' (x,y,z) satisfy

Vi.u' =0, (11)
V/' (u/flv/p/) :07 (12)

where
w =det(J)-J tus T (13)

Since equations (11) and (12) satisfy the coordinate transfor-
mation invariance, similar to the previous design of hydrody-
namic metamaterials in porous media, we can choose differ-
ent coordinate transformations and then use the transformation
matrix J to calculate different p’. Eventually, it is possible to
design hydrodynamic metamaterials with different functions
in non-porous media. For the hydrodynamic cloak in non-
porous media, the parameters can be obtained from Eq. (13),
as shown below!?’! (Fig. 1(a)):

! !
/ — l'er lJ’re
H <ugr Hhe )

<r/(’"O_R1) (r,_gl)/r,) W, Ri<r <Ry (14)

Inspired by the use of microfabricated arrays to steer, re-
fract and focus the flow of biomaterials by Ref. [31], the hy-
drodynamic cloak for Hele—Shaw flows[*?! is also experimen-
tally fabricated.!?°! It proves both theoretically and experimen-
tally that the cloak can realize zero drag force.

Similarly, hydrodynamic concentrators can be designed
by varying the coordinate transformation of the expansion
and compression of different regions in the axial direction!®3]
(Fig. 1(b)), hydrodynamic rotators can be designed by vary-
ing the coordinate transformation of the rotation angle!34!
(Fig. 1(c)), and hydrodynamic camouflage devices can be de-
signed by adding the corresponding camouflage based on hy-
drodynamic cloaks!®! (Figs. 1(d) and 1(e)). These four hy-
drodynamic devices are summarized in Table 1. Noteworthily,
when two coordinate transformations of hydrodynamic rota-
tors and hydrodynamic concentrators are combined, a venturi-
effect rotating concentrator in varying arbitrary directions can
be fabricated.!*®! This study also reveals that changing the se-
quence of rotation and aggregation results in nonreciprocity
of coordinate transformations, i.e., rotational coordinate trans-
formations are performed first, followed by aggregation trans-
formations, compared with the opposite order of coordinate
transformations, one of which exhibits a rotational hysteresis
effect.
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Fig. 1. Pressure and velocity distributions of different hydrodynamic devices. (a) Cloak. (b) Concentrator. (c) Rotator. (d) Camouflage: single
cylinder appears like two cylinders (streamlines (black lines) and isobars (white lines)). (e) The equivalent velocity field of the camouflage
illusion, where two cylinders actually exist and no cylinder is present in the central region. Images from Refs. [29,34,35].

Since the shapes of objects in real life usually come in
complex shapes, the authors in Ref. [37] designed a complex-
shaped cloak in Hele—Shaw flows by assembling different
shaped cloaks, such as the square, triangular, and exemplary
three-dimensional house-shaped cloaks. This study provides
practical ideas for designing cloaks with different structures.
In addition, the authors in Ref. [38] investigated the cloaking
and drag reduction properties of cylinders, elliptic cylinders,
vertical flat plates, and airfoils by using coordinate transfor-
mation theory, respectively. The study demonstrates that al-
though the cloak designed by the coordinate transformation
theory can achieve perfect cloaking only in the creeping Hele—
Shaw flow situation, the drag reduction performance of the
cloak remains excellent for the modest Reynolds number sit-
uation. It is remarkable that most of the above metamaterials
obtained based on coordinate transformation theory are either
obtained by linear coordinate transformation (transformation
parameters are independent of other variables) or by back-
ground fluid being a single-phase flow. The investigation of
hydrodynamic metamaterials in the case of nonlinear coordi-
nate transformation and multiphase flow remains to be further
explored, to which references!**#?! may provide inspiration.
It is noticeable that when we introduce nonlinear coordinate
transformation or multiphase flow, we need to pay attention
to whether the original simplified equations (Egs. (11) and
(12)) are still applicable. For nonlinear problems, it is usu-

ally necessary to exploit a new theory. Subsequently, coupling
the fluid dynamics and energy transport equations, the the-
ory of transformation heat transfer in creeping flows is devel-
oped, which allows the design of different convective thermal-
metamaterial devices,*! 3 and these findings will help to fur-
ther explore nonlinear hydrodynamic metamaterials contain-
ing thermo-hydrodynamic coupling.

In order to promote the cloak to the non-creeping flows,
the authors in Ref. [44] theoretically designed a cloak in the
laminar flows by coordinate-transforming the density and the
viscosity coefficient simultaneously. However, transforming
the density means that the flow is treated as a compressible
flow, so the simultaneous manipulation of density and viscos-
ity coefficients is difficult to achieve from the current physical
viewpoint, and perhaps the technology in the future could re-
alize the simultaneous manipulation of both. Due to the lim-
itation of anisotropy of metamaterials using coordinate trans-
formation theory design, the authors in Ref. [45] used scat-
tering cancellation method to theoretically and experimentally
implement a metamaterial-free cloak by adjusting the height
of the cloak. However, the method enables cloaking in two-
dimensional flows by sacrificing the flow in the third dimen-
sion, which is only valid at very low Reynolds numbers. Be-
sides, the authors in Ref. [46] experimentally designed a mi-
crofluidic cloak that does not require metamaterials by using
3D printing and two inlet and outlet flow filters; and the au-

098101-4



Chin. Phys. B 31, 098101 (2022)

thors in Ref. [47] used deep-reinforcement-learning to achieve
hydrodynamic active cloaking, but these cloaks still fail to
achieve perfect cloaking.

To homogenize the hydrodynamic cloak,! the authors
in Ref. [35] then simplified the anisotropic inhomogeneous
cloak to an anisotropic homogeneous cloak by using the in-
tegral median theorem and coordinate transformation theory.
It is concluded that the drag force on the cloak in creeping
flows becomes zero, and the cloak continues to exhibit remark-
ably strong drag reduction characteristics in laminar flows.
Aiming to enable the cloak to be constant and extendable
to non-creeping flows, the authors in Ref. [35] utilized the
convection—diffusion—balance method, to solve Egs. (9) and
(10) analytically, and designed a microscale cylindrical cloak
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(b) Re=10.34

effective in a certain Reynolds number range (Re < 42), the
parameters of which are only related to the radius of the object
and the cloak (U = (R} —R?)/(R3+R3), Uy is the back-
ground fluid viscosity coefficient), which greatly reduces the
difficulty of cloak fabrication (Fig. 2). Moreover, the study of-
fers the possibility of realizing perfect cloaking by utilizing ex-
ternal fields (e.g., temperature fields, external forces, and other
methods). Subsequently, the authors in Ref. [48] achieved
laminar hydrodynamic cloaking and hydrodynamic shielding
at microscale from both numerically and experimentally by
exploiting the electroosmotic flow-control method (Fig. 3).
In addition, the method can achieve cloaking for arbitrarily

shaped objects at the microscale.
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Fig. 2. Velocity distributions superimposed with streamlines (black lines) and isobars (white lines) of the hydrodynamic cloak at various

laminar Reynolds numbers. 3]
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Fig. 3. Hydrodynamic cloaking and shielding in the presence of cylindrical objects./*8! (a)—(c) Theoretical pressure profile (color map) and
streamlines (white lines) corresponding to (a) pressure-driven flow, (b) shielding, and (c) cloaking. (d)—(f) Experimental velocity fields (blue
arrows) and resulting streamlines (black lines) corresponding to (d) pressure-driven flow, (e) shielding, and (f) cloaking.

It is noteworthy that although zero-drag hydrody-
namic cloaks for non-creeping flows have been extensively
studied, 3%#*48] these hydrodynamic cloaks are still mainly
limited to low Reynolds numbers. How to improve the ap-
plicability of hydrodynamic cloaks to the high Reynolds num-

bers will be a very challenging direction in the future. Re-
search in high Reynolds-number cloaking will not only enable
us to achieve zero energy consumption cloaking motion, but
also allow us to escape extreme natural disasters, such as ty-
phoons, tornadoes, and tsunamis, efc. Besides, if we can de-
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sign hydrodynamic metamaterials under high Reynolds num-
bers, we can even regulate these natural disasters and convert
them into electrical energy for the benefit of mankind; alter-
natively, we can even regulate the climate as well as make cli-

mate weapons. (49?1

3. Hydrodynamic metamaterials beyond cloak-
ing

In addition to hydrodynamic cloaking metamaterials, nu-
merous other hydrodynamic metamaterials are not intended
for cloaking purposes, such as liquid diodes,!6%93-65-%1 Jig-
uid gates,!%-7? among other aspects. Since these studies have
already been reviewed in the relevant literature, we will not ex-
pand too much on them. For this reason, we selectively choose
some typical hydrodynamic metamaterials for a brief introduc-
tion, hoping to inspire relevant studies.

3.1. Liquid diodes

The directional and passive transport of water droplets
is a universal phenomenon in nature and plays a key role
in a variety of practical applications in the fields of energy,
materials, physics, chemistry, biology, and medicine.>3-63!
Hence, numerous researchers have investigated bionic liquid
diodes.[%+%1 Similar to an electronic diode that can conduct
current in the forward direction and block it in the reverse
direction, a liquid device that can rectify liquids to flow in
a directional manner can be treated as a “liquid diode”. It
is noteworthy that although traditional mechanical valves can
also perform unidirectional transport functions, traditional me-
chanical valves are relatively bulky compared to liquid diodes.
Moreover, unlike traditional valves, the primary regulation of
liquid diodes is based on surface chemistry and topography,
which is mainly used in microfluidics and biology. Besides,
as opposed to electronic diodes that work on semiconductor
materials by applying an external voltage, ideal liquid diodes
are able to deliver liquids in a directional manner on a vari-
ety of materials regardless of the need for any external energy
entry. [ If liquid diodes could be built as liquid logic gates
or even logic gate arrays, then liquid “logic circuits” could
be built and their applications would be very exciting. Finally,
the dependence of liquid diodes on surface topography leads to
the existence of hysteresis resistance, which limits their trans-
port distance and velocity significantly. How to overcome the
hindering liquid self-transfer on the liquid diode will be an im-
portant challenge for it.

3.2. Liquid gates

Controllable fluid transport!’3>~7®) plays an important

77,78] [79,80]

role in multiphase separations, ! energy harvesting,

82,83

microfluidics,®! chemical analyses,| smart valves, [34:85]

and other fields. In recent years, researchers have proposed

an emerging liquid gating technology that uses liquids as dy-
namic structural materials, breaking through the limitations of
a single solid material with properties such as anti-pollution,
energy saving, and functional controllability, and has received
considerable attention as a novel method to control fluid trans-
port. The mechanism of this technology adopts the unique
mobility of liquid as a dynamic “gate” to realize the “opening”
and “closing” of the pore channel under certain pressure!’%7!]
or photothermal induction.””) Meanwhile, due to the differ-
ence of interfacial tension between different kinds of transport
fluids and gating fluids, it features specific gating thresholds
for each type of transport fluid, so that transport control of dif-
ferent fluids under different conditions can be implemented. It
is worth noting that liquid gates are affected by a variety of fac-
tors such as pressure, temperature and surface tension, among
others, their stability and application is extremely demanding
on the environment. Therefore, it will be a great challenge to
design a stable liquid gate for a wide range of applications.

4. Summary and outlook

In this review, we introduce the recent progress of hydro-
dynamic metamaterials. The current studies of hydrodynamic
metamaterials mainly focus on the use of coordinate transfor-
mation theory, analytical solution methods, machine learning,
and external field control. However, previous studies are still
mainly limited to the moderate Reynolds number range, which
is mainly due to the Navier—Stokes equations are a nonlinear
system of equations as well as the coordinate transformation
theory is only valid in the creeping flow and shallow channel
flows. Therefore, the current research scope of hydrodynamic
metamaterials is still mainly in the field of microfluidics, and
many aspects remain to be further explored. For this reason,
we propose several prospects here.

(1) Since microfluidics has been extensively studied in the
field of biofabrication, ®] related manipulation tools, such as
optical, magnetical, electrical, mechanical, and combined ma-
nipulation techniques, may contribute in the future to diversify
the fabrication of hydrodynamic metamaterials.

(i1) The hydrodynamic metamaterials in this review are
mainly for the flow control of conventional fluids, and few
hydrodynamic metamaterials have been reported for the de-

sign of some exotic fluids, such as supercritical fluids, 87891

81001 1yul-

superfluids,®*%3 liquid metal,®*°7! metafluids,”®
tiphase flows,[!?1=103] among others. These exotic fluids may
be very different from conventional fluids in terms of flow con-
trol because of their different fluid properties, which will prob-
ably provide directions for the development of the investiga-
tion scope of hydrodynamic metamaterials.

(iii) Because both the Stokes and Brinkman—Stokes equa-
tions at the steady state can be transformed into the Laplace

equation, which is consistent with the steady-state form of the
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heat conduction equation. Therefore, many current innovative

104-109] ~an be applied to the

ideas for thermal metamaterials!
design of hydrodynamic metamaterials. In addition, due to the
control of thermal metamaterials mainly includes three basic
forms of thermal conduction, thermal convection and thermal
radiation, the development of the area of hydrodynamic meta-
materials will help to reveal the manipulation mechanism of
convective thermal metamaterials and further promote the de-
velopment of thermal metamaterials.

(iv) Noteworthily, because of the zero-drag characteris-
tic of hydrodynamic cloaks, one of the most challenging and
attractive research directions in the future lies in the design
of hydrodynamic cloaks in high Reynolds numbers. If the
high-Reynolds-number hydrodynamic cloak is implemented,
the human energy consumption will be significantly reduced,
which is extremely beneficial to the development of aeronau-
tics and astronautics, as well as to utilize or defend against
typhoons, tornadoes, and other harsh natural environments.

(v) As a new branch of flow control, hydrodynamic meta-
materials facilitate the understanding of fluid transport mech-
anisms which plays a critical role in understanding the mecha-
nism of turbulent flows. Hence, comprehension to mechanism
of turbulent flows will be promoted with the further advance-
ment of hydrodynamic metamaterials. Because traditional
fluid mechanics treats the dynamic viscosity as a fundamen-
tal property of a fluid, it may limit our understanding of fluid
transport. In contrast, most of the parameters of hydrodynamic
metamaterials are presented in the form of a tensor that varies
with space, for example, the dynamic viscosity tensor exists
in the limit values of infinity and zero. Understanding the dy-
namic viscosity or other parameters with space can deepen the
understanding of the essence of fluid flows. Because turbu-
lence can be understood mathematically and physically as the
limit of fluid mechanics at zero viscosity. However, this limit
comes as a singularity, because if we set the viscosity term
directly to zero, we will not obtain turbulence using the Eu-
ler equation. This is because the viscous dissipation vanishes
as the viscosity becomes smaller and smaller. Therefore, if
we examine the nature of hydrodynamics with the perspective
of asymptotically varying viscosity coefficients, it may help
to reveal the nature of turbulence in the future. Perhaps this
research direction, when flourished, could be called “metahy-
drodynamics”.
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