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ABSTRACT

Inspired by the electronic and acoustic Zeeman effects in wave systems, we demonstrate here that an angular momentum bias generated by a
volume force can also lead to modal splitting in convection-diffusion systems but with different features. We further reveal the thermal
Zeeman effect by studying the temperature propagation in an angular-momentum-biased ring with three ports (one for input and two for
output). In the presence of an optimal volume force, temperature propagation is allowed at one output port but isolated at the other, so
rectification coefficient can reach a maximum value of 1. The volume forces corresponding to rectification coefficient peaks can also be pre-
dicted by scalar (i.e., temperature) interference quantitatively. Compared with existing mechanisms of thermal nonreciprocity, an angular
momentum bias does not require temperature-dependent and phase-change materials, which has an advantage in wide-temperature-range
applicability. These results may provide insights into thermal stabilization and thermal topology. The related mechanism is also general for
other convection-diffusion systems such as mass transport, chemical mixing, and colloid aggregation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0049774

Nonreciprocity refers to asymmetric propagation along different
directions, which has aroused broad interest in wave systems.1,2 A
common approach to nonreciprocity is based on the modal splitting
induced by an angular momentum bias. For example, electromagnetic
nonreciprocity can be realized in magneto-optical media based on the
electronic Zeeman effect. Inspired by the electronic Zeeman effect, the
acoustic Zeeman effect was also proposed to obtain acoustic nonreci-
procity with air circulation.3 The origin of an angular momentum bias
is various, which can be attributed to circular motions,3,4 magnetic
fields,5,6 or spatiotemporal modulations.7–10 However, the related
mechanism is confronted with many challenges in convection-
diffusion systems. On the one hand, it is unknown how to apply an
angular momentum bias in convection-diffusion systems. On the
other hand, convection-diffusion systems have many crucial differ-
ences from wave systems, which are discussed in detail when exhibit-
ing our results.

Macroscopic thermal transport is a typical convection-diffusion
system, where breaking reciprocity is highly expected and widely

explored.11 Reciprocity generally refers to that a physical quantity has
the same properties along different directions. For thermal transport,
the physical quantity can be heat flux, temperature amplitude, etc.
Thermal nonreciprocity can be realized with temperature-dependent
(i.e., nonlinear) or phase-change materials,12–14 but the strong depen-
dence on temperature restricts its wide-temperature-range applicability.
Moreover, spatiotemporal modulations can also help to achieve ther-
mal nonreciprocity,15,16 but thermal conductivities and mass densities
require complicated and dynamic control. Therefore, it remains diffi-
cult to realize thermal nonreciprocity with linear, wide-temperature-
range applicable, and easy-to-control materials.

Inspired by the electronic and acoustic Zeeman effects in wave
systems,3–10 we introduce the thermal Zeeman effect with an angular
momentum bias generated by a volume force [see Figs. 1(a) and 1(b)].
Here, a volume force is a force exerted on all fluid particles and is pro-
portional to the mass of the fluid in that volume, such as the forces
exerted on fluids in a gravitational field and ferrofluids in a magnetic
field. We then study the temperature propagation in a three-port ring
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to achieve thermal nonreciprocity and isolation [see Fig. 1(c)].
Here, temperature propagation refers to the propagation of a peri-
odic temperature profile,17–25 which can also be regarded as a tem-
perature fluctuation. Scalar (i.e., temperature) interference is
crucial to explain thermal nonreciprocity, which quantitatively
predicts the rectification coefficient peaks found in simulations.
The present scheme is free from nonlinear and phase-change
materials, so it is applicable to a wide temperature range.
Moreover, complicated control of parameters is also not necessary,
which is feasible in practice. Following the idea that acoustic topol-
ogy can be achieved by arranging three-port rings in a graphene-
like array,26–31 we may also realize thermal topology with the
proposed mechanism of thermal nonreciprocity [see Fig. 1(d)].

Let us start from the thermal Zeeman effect. A thermal
convection-diffusion process is dominated by qC@T=@t þ $ � ð�j$T
þ qCvTÞ ¼ 0, where q, C, j, and v are the mass density, heat capacity,
thermal conductivity, and convective velocity of a fluid, respectively.32

T and t represent absolute temperature and time, respectively.
Without loss of generality, we discuss a steady incompressible creeping
flow33–36 driven by a linear pressure field along the x axis. A convective
velocity vðyÞ has a quadratic distribution along the vertical direction.37

We consider a small vertical height h and discuss an average convec-
tive velocity v ¼ �h2ð$P � f Þ=ð12lÞ, where l is the dynamic

viscosity of the fluid, P denotes pressure, and f is the volume force.37

In what follows, we also discuss the average values of velocities, tem-
peratures, and heat fluxes.

We then consider a periodic temperature profile T ¼ A cos ðbx
�xtÞ þ T0, where A, b, x, and T0 are temperature amplitude, wave
number, circular frequency, and reference temperature, respectively.
In the absence of a volume force f, a pressure field along þx (or �x)
generates an average convective velocity v0 (or �v0), see the upper
inset of Fig. 1(a). Therefore, circular frequencies are the same, i.e.,
x0 ¼ bv0 � ib2D with thermal diffusivity D ¼ j=ðqCÞ. Reðx0Þ
represents circular frequency, and �Imðx0Þ denotes temporal decay
rate. When there is a volume force f along þx, a pressure field along
þx (or �x) generates an average convective velocity vþ (or v�), see
the lower inset of Fig. 1(a). Circular frequencies are no longer the
same but split into

x6 ¼ bv6 � ib2D; (1)

with v6 ¼ v06h2f =ð12lÞ. The difference between convection-
diffusion systems and wave systems is reflected on the imaginary part
of Eq. (1). Wave systems are generally Hermitian with energy conser-
vation, so circular frequencies are real numbers without loss.3

However, convection-diffusion systems are non-Hermitian with loss,19

so circular frequencies become complex.
For intuitive understanding, we can imagine periodic conditions

on the left and right boundaries in Fig. 1(a) and regard the þx direc-
tion as the anticlockwise azimuthal direction. An angular velocity
V ¼ er � v=r0 and an angular volume force F ¼ er � f =r0 are intro-
duced, where er is the radial unit vector and r0 is an average radius.
The ring allows only discrete wave numbers, i.e., b ¼ N=r0; where N
is a positive integer.19 The frequency splitting described in Eq. (1) can
then be understood by the Zeeman effect, which results from an angu-
lar momentum bias generated by an angular volume force F, just like
the energy splitting of atoms due to a magnetic bias or the frequency
splitting of sounds due to an angular momentum bias.3 We also con-
firm the frequency splitting with finite-element simulations based on
the template of Heat Transfer in Fluids in COMSOL Multiphysics
(http://www.comsol.com/). Meshes are set as following: the maximum
element size is 5� 10�4 m, the minimum element size is 10�6 m, the
maximum element growth rate is 1.1, the curvature factor is 0.2,
and the resolution of narrow regions is 1. The relative tolerance for
time-dependent solver is 10�4. We use the parameters of water that is
a common material of broad applications like water-cooling. We
also set a pressure gradient of j$Pj ¼ 5N/m3, a wave number of
b ¼ 100pm�1, and a height of h¼ 2mm. The real part of Eq. (1)
then becomes x6 ¼ pð56f Þ=30. The simulation result agrees well
with the theory [see Fig. 1(b)].

To demonstrate thermal nonreciprocity with the thermal
Zeeman effect, we further consider a three-port ring, as shown in Fig.
1(c). We set port 1 to be an input port and ports 2 and 3 to be output
ports. We set a high pressure Ph at port 1 and two identical low pres-
sures Pl at ports 2 and 3. We also set a periodic temperature source at
port 1, i.e., T1 ¼ A1 cos ð�xtÞ þ T0. Ports 2 and 3 are set with open
conditions with no reflection. For a zero volume force, two symmetri-
cal velocities are obtained in the ring, i.e., v1!2 along the counterclock-
wise direction and v1!3 along the clockwise direction. Therefore,
temperature propagation at ports 2 and 3 are identical due to struc-
tural symmetry. However, when a volume force along the

FIG. 1. The thermal Zeeman effect. (a) Schematic diagram of modal splitting. (b)
Splitting of the real part of frequency as a function of volume force. (c) Angular-
momentum-biased ring exhibiting thermal nonreciprocity and isolation. (d)
Schematic diagram of thermal topology.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 118, 221902 (2021); doi: 10.1063/5.0049774 118, 221902-2

Published under an exclusive license by AIP Publishing

http://www.comsol.com/
https://scitation.org/journal/apl


counterclockwise direction is applied, v1!2 increases but v1!3

decreases. Therefore, an angular momentum bias is achieved in the
ring, and the temperature propagation from port 1 to port 3 is forbid-
den with an optimal volume force fopt.

We then perform finite-element simulations with time steps of
0.5 s to observe thermal nonreciprocity. Two crucial parameters
should be considered, i.e., the Peclet number and the Reynolds num-
ber. Since we use water for simulations, the Peclet number is
Pe¼ 2800, demonstrating that convection is dominant. As a result, the
convection-diffusion equation mainly exhibits hyperbolic features that
can support the propagation of wave-like temperature profiles. The
Reynolds number is Re¼ 4 that approximately corresponds to a creep-
ing or laminar flow,33–36 so the effects of boundary layer behavior and
singular perturbation can be ignored. In short terms, the expected phe-
nomena require (I) a large Peclet number for convection� diffusion
and (II) a small Reynolds number without turbulent flow.

The properties of temperature propagation can be reflected on
temperature amplitudes. A zero temperature amplitude indicates that
temperature propagation is isolated. The temperature and velocity pro-
files without a volume force are shown in the first column of Fig. 2. The
temperature amplitudes at ports 2 and 3 are identical due to structural
symmetry. However, it is crucially different when the volume force
reaches an optimal value fopt¼ 2N/m3. The temperature amplitude at
port 3 is dramatically reduced to zero, whereas that at port 2 still exists
(see the second column in Fig. 2). In other words, we achieve the isola-
tion of temperature propagation at port 3, and thermal nonreciprocity is
maximized. We then continue to increase the volume force to 6N/m3.
Although nonreciprocity still exists (see the third column in Fig. 2), the
temperature amplitude at port 3 is no longer zero. The velocity profiles
with different volume forces are shown in Figs. 2(g)–2(i). The velocities
at three ports are irrelevant to the volume force, but those in the ring are
affected linearly for realizing an angular momentum bias.

FIG. 2. Temperature and velocity profiles. (a)–(c) Temperature profiles at 600 s with volume forces of 0, 2, and 6 N/m3, respectively. (d)–(f) Average temperatures at ports 2
and 3 from 500 to 600 s. (g)–(i) Steady velocity profiles. Arrows denote convective velocities. The fluid is water, whose mass density, heat capacity, thermal conductivity, and
dynamic viscosity are 1000 kg/m3, 4200 J kg�1 K�1, 0.6W m�1 K�1, and 0.001 Pa s, respectively. The structure sizes are r1 ¼ 49 mm, r2 ¼ 51 mm, h ¼ r2 � r1 ¼ 2 mm,
and d¼ 49mm. Other parameters: Ph¼ 1 Pa, Pl¼ 0 Pa, and T1 ¼ 40 cos ð�pt=10Þ þ 323 K.
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After discussing temperature and velocity properties, we are
allowed to further explore heat flux properties. We independently
study conductive fluxes and convective fluxes for clarity. Temperature
amplitudes decay spatially T ¼ Ae�ax cos ðbx � xtÞ þ T0 with a
being spacial decay rate. Conductive fluxes are given by Jcond
¼ �j@T=@x ¼ jAe�ax½a cos ðbx � xtÞ þ b sin ðbx � xtÞ�, which
are proportional to T. Convective fluxes are determined by
Jconv ¼ qCvT , which are also proportional to T. Therefore, heat flux
properties are similar to temperature properties due to J / T . Since
conductive fluxes are related to spatial derivation, we discuss heat
fluxes very close to ports 2 and 3 (with a 4mm distance) to ensure
accuracy. Finite-element simulations are presented in Fig. 3. When the
volume force is zero, the conductive fluxes (or convective fluxes) at
ports 2 and 3 are identical (see the first column of Fig. 3). When an
optimal volume force fopt¼ 2N/m3 is applied, the conductive flux van-
ishes at port 3 but still exists at port 2 (like an alternating conductive
flux). Therefore, the isolation of conductive fluxes is achieved.
Although the convective flux at port 3 is nonzero, it does not vary tem-
porally. The convective flux at port 2 still varies periodically (see the
second column of Fig. 3). When the volume force is 6N/m3, conduc-
tive and convective fluxes are also nonreciprocal (see the last column
of Fig. 3).

We further discuss thermal nonreciprocity quantitatively, and
six key positions R1-R6 are labeled in Fig. 4(a). We define two trans-
mission coefficients as R1�2 ¼ A2=A1 and R1�3 ¼ A3=A1, where A1,
A2, and A3 are the temperature amplitudes at ports 1, 2, and 3,
respectively. We also define a rectification coefficient g as
ðR1�2 � R1�3Þ=ðR1�2 þ R1�3Þ. R and g as a function of f are shown
in Fig. 4(b1) with volume force steps of 0.1N/m3. R1�2 first increases,
then decreases, and finally varies quasiperiodically. R1�3 decreases ini-
tially, increases afterwards, and varies quasiperiodically at last. R1�2
and R1�3 lead to an initial increase and a final decrease in g, and
gmax ¼ 1 appears at fopt¼ 2N/m3, indicating the isolation of

temperature propagation at port 3. Although R1�2 and R1�3 ultimately
vary quasiperiodically, they are synchronous, so g still decreases. We
also change the circular frequency to 2p=15 rad/s, and the transmission
results are shown in Fig. 4(b2). gmax ¼ 1 still appears at fopt¼ 2N/m3.
We then explain two main phenomena quantitatively, i.e., the optimal
volume force fopt and the final quasiperiodic variations of R1�2 and
R1�3. For clarity, we also plot the average convective velocities at posi-
tions R1-R6 as a function of volume force in Fig. 4(b3).

The optimal volume force fopt can be quantitatively predicted by
scalar (i.e., temperature) interference. Different from vector (say, elec-
tric or magnetic field) interference in wave systems, scalar interference
cannot be explained by the principle of vector superposition. A key
point to understand scalar interference is the decay rate. Let us take a
visual example. Constructive interference refers to that a high temper-
ature meets another high temperature, but the mixed temperature is
not doubled and just decays as before. Destructive interference refers
to that a high temperature meets a low temperature, and the mixed
temperature decays immediately with a far larger decay rate.

We then use scalar interference to explain thermal nonreciproc-
ity. The transmission at port 2 has only one route, i.e., R1-R5-R2.
However, the transmission at port 3 has two routes, i.e., R1-R5-R6-R3

and R1-R4-R3. When two routes have a phase difference of
ð2N1 � 1Þp with N1 being an integer, destructive interference causes
the transmission at port 3 to reach a local minimum value. To achieve
a global minimum transmission at port 3, the temperature amplitudes
of routes R1-R5-R6-R3 and R1-R4-R3 should be comparable, which
requires vR6 � vR4 (�means a little greater than). These requirements
can be summarized as

�b vR4ð Þ þ b vR5ð Þ þ b vR6ð Þ
� �

p r1 þ r2ð Þ=3 ¼ 2N1 � 1ð Þp; (2a)

fopt � fvR4¼vR6
¼ 3 Ph � Plð Þ

2 2pr2 þ 9dð Þ ; (2b)

FIG. 3. Heat flux profiles. (a)–(c) Conductive fluxes and (d)–(f) convective fluxes with volume forces of 0, 2, and 6 N/m3, respectively. Conductive fluxes have negative values
due to direction changes.
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where Eq. (2a) ensures destructive interference and Eq. (2b) ensures
comparable temperature amplitudes of routes R1-R5-R6-R3 and
R1-R4-R3. The additional requirement described in Eq. (2b) also
reflects the difference between convection-diffusion systems and wave
systems. Since wave systems are usually Hermitian without loss, it
does not require to consider wave amplitudes. However, convection-
diffusion systems are non-Hermitian with loss,19 so temperature
amplitudes should be considered. The wave number b can be
expressed as a function of convective velocity v

b vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2v2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 þ 16x2D2
pp
4D

; (3)

where the convective velocities at positions R4; R5, and R6 are

vR4 ¼ �
h2

12l
� 3 Ph � Plð Þ

2pr2 þ 9d
þ f

� �
; (4a)

vR5 ¼ �
h2

12l
� 3 Ph � Plð Þ

2pr2 þ 9d
� f

� �
; (4b)

vR6 ¼
h2

12l
f : (4c)

Detailed derivations of Eqs. (2)–(4) can be found in the supplementary
material.

For the results in Figs. 4(b1) and 4(b2), we plot the corresponding
N1 � f curves described in Eq. (2a) in Fig. 4(d1). The f corresponding
to an integer N1 is what we require. We can also derive
fvR4¼vR6

¼ 1:97N/m3 according to Eq. (2b). Therefore, theoretical pre-
dictions of the optimal volume force are fopt¼ 1.99N/m3 (N1 ¼ 3) for
Fig. 4(b1) and fopt¼ 2.08N/m3 (N1 ¼ 3) for Fig. 4(b2), which agree

well with f¼ 2 N/m3 found in simulations. Moreover, only N1 ¼ 3
appears in simulations, and other values of N1 vanish. This is because
the volume force interval between two adjacent integers of N1, i.e.,
Df � 0:1N/m3 is too small to observe.

We then increase Ph to 3 Pa to observe the scalar interference at
port 3, and R1�3 varies quasiperiodically near fvR4¼vR6

[see Figs. 4(c1)
and 4(c2)]. We take the three valleys R1�3 in Fig. 4(c1) or Fig. 4(c2)
as an example. The corresponding volume forces are 5.3, 6.3, and
7.3N/m3 for Fig. 4(c1), and 5.7, 6.4, and 7.2N/m3 for Fig. 4(c2). The
theoretical predictions with Eq. (2a) are 5.28 (N1 ¼ 2), 6.32 (N1 ¼ 1),
and 7.31 (N1 ¼ 0) N/m3 for Fig. 4(c1), and 5.67 (N1 ¼ 2), 6.46
(N1 ¼ 1), and 7.20 (N1 ¼ 0) N/m3 for Fig. 4(c2), which are clearly
presented in Fig. 4(d2). We can also derive fvR4¼vR6

¼ 5:91N/m3 with
Eq. (2b). Therefore, fopt¼ 6.32N/m3 and fopt¼ 6.46N/m3 correspond
to the smallest transmissions in Figs. 4(c1) and 4(c2), respectively.
Meanwhile, gmax ¼ 0:94 appears at f¼ 6.3 N/m3 in Fig. 4(c1), and
gmax ¼ 0:90 occurs at f¼ 6.4 N/m3 in Fig. 4(c2). Therefore, the opti-
mal volume force fopt derived from Eqs. (2a) and (2b) is in good agree-
ment with simulations.

The final quasiperiodic variations of R1�2 and R1�3 can be attrib-
uted to the discrete modal of the ring.19 We take the results in Fig.
4(b1) as an example. The final variations begin at approximately f¼ 8
N/m3, and the convective velocities at positions R4; R5, and R6 are
along the counterclockwise direction. Therefore, fluids flow counter-
clockwise in the ring with only a velocity difference. Since the ring can
only support discrete wave numbers,19 R1�2 and R1�3 exhibit quasipe-
riodic variations with f. When f corresponds to an allowed (or forbid-
den) wave number of the ring, transmission reaches a local maximum
(or minimum) value. Therefore, the volume force for a local maximum
(or minimum) transmission should satisfy

FIG. 4. Quantitative analyses of transmis-
sion coefficients and rectification coeffi-
cients. (a) Schematic diagram showing six
key positions R1-R6. Transmission coeffi-
cient R, rectification coefficient g, and con-
vective velocity v as a function of volume
force with (b1)–(b3) Ph¼ 1 Pa and
(c1)–(c3) Ph¼ 3 Pa. The circular frequen-
cies of periodic temperature profiles are
p=10 for [(b1) and (c1)] and 2p=15 for
[(b2) and (c2)]. The N1 � f curves
described in Eq. (2a) with (d1) Ph¼ 1 Pa
and (d2) Ph¼ 3 Pa. (d3) The N2 � f
curves described in Eqs. (5a) and (5b).
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b vR4ð Þ þ b vR5ð Þ þ b vR6ð Þ
� �

p r1 þ r2ð Þ=3 ¼ 2N2p; (5a)

b vR4ð Þ þ b vR5ð Þ þ b vR6ð Þ
� �

p r1 þ r2ð Þ=3 ¼ 2N2 � 1ð Þp; (5b)

whereN2 is a positive integer.
We also compare theoretical predictions with finite-element sim-

ulations by taking the right three peaks of R1�2 and R1�3 in Fig. 4(b1)
as an example. Their corresponding volume forces are 10.4, 12.6, and
16.3N/m3, respectively. The theoretical predictions given in Eq. (5a)
are 10.47 (N2 ¼ 5), 12.63 (N2 ¼ 4), and 16.36 (N2 ¼ 3) N/m3, respec-
tively [see Fig. 4(d3)]. We also take the right three valleys of R1�2 and
R1�3 in Fig. 4(b1) as another example. Their corresponding volume
forces are 11.5, 14.3, and 19.6N/m3, respectively. The theoretical pre-
dictions given in Eq. (5b) are 11.42 (N2 ¼ 5), 14.21 (N2 ¼ 4),
and 19.39 (N2 ¼ 3) N/m3, respectively [see Fig. 4(d3)]. Therefore,
the simulations still match with the theoretical predictions of Eqs. (5a)
and (5b).

We finally provide some experimental suggestions for complete-
ness. A periodic temperature can be realized by alternately using a
ceramic heater and a semiconductor cooler. Ferrofluids are a good
candidate to realize a volume force, which are generally composed of
ferromagnetic nanoparticles with 10nm diameter dispersed in carrier
fluids.38 Here, we may use aqueous ferrofluids containing Fe3O4 nano-
particles. Compared with the thermal conductivity and viscosity of
water, those of aqueous ferrofluids are slightly enhanced39 but still
approximately applicable. Then we can apply an external magnetic
field to guide ferromagnetic nanoparticles to move counterclockwise,
so a volume force can be effectively realized. The temperatures at ports
2 and 3 can be detected by an infrared camera. Therefore, it should be
possible to observe thermal nonreciprocity experimentally.

In summary, we reveal thermal nonreciprocity based on the ther-
mal Zeeman effect, referring to the modal splitting with an angular
momentum bias generated by a volume force. The maximum rectifica-
tion coefficient can reach 1, so the isolation of temperature propaga-
tion is achieved at one output port. These results can be quantitatively
explained by scalar interference, whose key lies in the decay rate. The
proposed mechanism does not require nonlinear and phase-change
materials, which has a wide range of applicability. Thermal nonreci-
procity may not only have potential applications to reduce thermal
fluctuation and realize thermal stabilization, but also open new direc-
tions in thermal metamaterials40 such as topological thermotics, as
schematically shown in Fig. 1(d). Moreover, an angular momentum
bias is also general for other convection-diffusion systems such as
mass transport,41,42 chemical mixing,43 and colloid aggregation,44,45

where mass diffusivity and concentration correspond to thermal diffu-
sivity and temperature in thermal transport, respectively.

See the supplementary material for detailed derivations of
Eqs. (2)–(4).
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